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Abtract: The stability of a perfect fluid flow was the subject of several studies. Tt is well known that in very
many idustrial applications, the improvement of output of any machine crossed by a fluid requires a good
knowledge of stability and instability zones of this fluid. The aim of this research is to contribute to the study
of Jeffery-Hamel flow stability. Flow of an incompressible viscous fluid from a line source or sink at the

mtersection of the two rigid planes.
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INTRODUCTION

Today it 13 well known that in many applications of
industry (aerospace, chemical, civil and mechanical
engineering) the output inprovement of any machines
crossed by a fluid requires a good knowledge of the
stability and mstability zones of this fluid in the machines
pipes. Jeffery-Hamel flows are a family of exact solutions
of the steady two-
dimensional flows of an mcompressible viscous fluid from
a line source or sk at the mtersection of the two rigid
planes. They were discovered by Jeffery (1915) and
independently by Hamel (1916) and have extendively
studied and discussed by several authors, e.g.,
Sternberg and Kolter (1958), Fraenkel (1962,1963), Lugt
and Schwiderski (1965), Batchelor (1967), Allemen and
Eagles (1984), Georgiou and Eagles (1985), Sobey and
Drazin (1986), Banks et al. (1988), McAlpine and Drazin
(1998), etc.

For our part, one tried to contribute to the study of
the Jeffery-Hamel flow stability in accordance with the

Navier-Stokes equations for

Time source or sink rVr
/]Q/'

Fig. 1. The geometrical configuration of Jeffery-Hamel

flows

small perturbances. The (Fig. 1) represents the geometry
of thus flow; the movement is umform along the 7 axis and
it is natural to suppose that it is purely radial, i.e.:

ve =v(r,0)
Vive=0. (1)
v =0.

Basic flow: Consider flow of an incompressible viscous
fluid. Flow is governed by the cauchy equations:

N -
p.[at + (V.V).V} =—gradP+ )
WAT + (\ + 31).grad dive

For Jeffery-Hamel flow, two-dimensional flow
between two rigid planes, Eq. 2 1s reduced to :

(vV)¥ = % gradP + v.AV (3)

v : Kinematic viscosity of the fluid
The radial velocity for J-H flow, V1, 1s given by:

_1®)
7I'

Vr

where:
1: radial coordinate.
0 : azimuthal angle (- ¢ <0 <+ ).
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The mass flux between the walls:

F(0) = - F(0% o)
e o
Q= J- rvedd=C"= Q Fr(e) — lFr(e*’ (1). (6)
-a () o
= Rev.[ F(6%,0.d0 % F(0) = - F"(6%,01)
i} o

. 0
Where: —1<0*<+1, with 6% =— Finally, by considering (5) and (6), we cbtain:

o
Reynolds number 15 defined by: Fr0*e) + 40 F0*u)+ 2R,
o F(O* e)F" (B*a)=0 (7N
Re=Q/v (5)
With boundary conditions:
We consider the dimensionless parameters: F (1, &) = Oon 6*= 41,
F(0,c)=1 and F' (0, &) = Oat channel center (§*= 0).
"
F(O) = vi _f®) and (0%.) = fler,a)
Ve T(0) (0, ) Thus we have a fourth order boundary-value
problem. The resolution procedure of this problem is
Also, we can write: summarized n orgamgram 1.
[ F"+4a’F+2R aF.F" =0 |
| J——————> First iniegration.
| F+RaF+4a=A |
M | €=0, Rex =0 | Intial conditions.
]
=T v D=0 Resolution of forth order
T-4d'FRaF+2 +Ra3-C2 | T(i)=c || boundary value by RK4
Q=z ,Q(-1)=0 )
7 =-4g* Q- R TQ-C JZED=1
Avec: F' (0, a)=1
Ap<e C=1R, a), F=F( *,a) for differents
NO Yes R.a Values

Organigram 1-Numerical Evaluation of basic flow.

The C constant, which represents fluid-wall friction, is evaluated by:

i i

Q Fi @,Ti%

_ e~ __"ac 'Yac
AC_Ci+1 Ci_ B E

aFn —+ aTn

Ge) G

For the case of the convergent flow ((¢g) . the function f(0) bemng everywhere negative and varies from 0 for 6 =+
at the value - f{0) (f(0) =0) for 6=0. The convergent flow is symmetrical compared tof = 0 (i.e f0) = -0 ) and possible for
any anglec{t and any Reynolds number (Fig. 2 and 3).

In the study of the divergent flow, (Q{0) the function f{8) being everywhere positive and varies from 0 for 8 =t ¢
at the value +f(0) (f(0) =0) for The divergent flow, everywhere symmetrical compared to is not possible, for the given
angle, only for a Reynolds number, Re, nothigher than a given limit. This is called return point or separation point
(Fig. 4 and 5).In this pomt, flow changes direction. When the Reynolds number, Re, becomes large, the solution of the
symmetrical divergent flow 1s not more legitimate and, it appears other symmetrical solutions with max and min velocities.
These velocities mcrease as Re mcereases, which leads to a mode of turbulent flow.

620



w04

J. Eng. Applied Sci., 2 (3): 619-624, 2007

T T T T T T T T T 1
-1 09 08 -07 -06 -05 -04 03 02 -01 ¢
g*

Fig. 2. Dimensionless profiles of velocity (@ =0.001)
for different values of Rett. 1. Re ¢ =-28, 2. Re @
=-7,3Rea=0,4 Ret=+7,5 Recr =414, 6. Re
o = +28.
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Fig. 3: Dimensionless profiles of velocity (¢ =0.001) for
different values of Rect

Stability analysis:

The perturbation equation: The stability analysis 13 done
by superimposing to the stationary solution, v(7, 6)a time
dependant perturbation, u (r, 8, t) such as the resulting
movement is:

Vet U
Vo1 Us (8)
Ptp
Where:

2.5

2

b
h
1
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Friction coefficient, C
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Fig. 4. Friction coefficient in divergent (=0.001) for

different values of Re & channel (case of &

= 0.001). o-" for different values of Re «,
6

channel (case of o ~ ™ )1. Reaw=-28,2. Ret =
6

7,3 Rea=0,4 Rea=+7,5Rea=+14,6 Re
=+28.79

v’ v0 and: Satisfied basic flow.

u, Uy Radial and azimuthal velocity perturbation and: P
the pressure perturbation.
Substituting (8) in (3), we obtain:

azur azue duse azur v Our
—TI. -——+v + .

db.ot  orot ot dbor 09 or

az\fr . dur gvr . 1 aZVr 1 due dvr

2
aua
A

) ) eI — — L. :
d00r ¢0 or r g T 20 g0 ar

ov: Buei2 auei ov: [ ajur 1 ajur

T.—.——2Vr.— — s, =v. — ==
or or ar or dar T oo
+l azu: 2 azueil auri ajuei azueil ajue
: : 2 2" 3 : 2 : 2
v 90.0r r 99 1 90 or or U aroo

.08 rz'ae roor

2
2
2 2
1 qgus 2 gu 2 0w 10us us
=8 T 0~ S 2y =
r ab

&)

With boundary conditions: u(r, 0, 8 =0, at @ =+«
The radial and azimuthal velocities, u, and ug, may be

written in terms of generalized streamfunction ¥ as:

- (10)
ar

) (11)
r df
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Fig. 5: Friction coefficient in divergent channel (case

of (y _n
( 6)
Consider the new dimensionless variables:

r* =112
e =y/flo)

(12)

and knowing that 6% = 0/¢, f(6*) = f(0*,a)Vf(o, ¢), Re =
f{o).a/v, by using the operatorV, we have:

oy * 2 d 2
Y= ; (V™) =— (V™)
aar** gr* (13)
* b VZ Ay V2 *
W = (Viyr*),. ar*( W*)

While considermg (10), (11), (12) and (13), we obtain
finally:

Re. F(E) )

(Vo). + (Vi) -
(14)
2.Re F'(6*, OL) Re F'(6*, ot) N
2 4 w 8 3 3 )
o r* o T*
with boundary conditions:
Y e=
y =0, jatf=*a (15)
Y. =0

The general solution of the linear differential Eq. 14 of
the perturbation can be represented by the sum of the
particular solutions where ¥_* depends on time by the

L
factor: e **, such as:

Peit*r*0,a.Rey=¢"" % (r* 0, ¢, Re) (16

Substituting (16) m (14), we obtain:

4 %
x)r*_2.Re.l;(84 )

o T*

*
m.V2x+7Re'z(e*’a) (V*

(17)
Re F"(0* o
#XT

pich =V

o T*
with boundary conditions:

v=0,%=0ab==2u (18)
(17) represents the reduced fourth order linear differential

equation of the perturbation.

The case of an arbitrary reynolds number:
Very small kinematic viscosity v << 1: In this study, we
consider the new dimensionless variables:

T=r*(-)%4 (19)
Substituting (19) m (17), we obtain:

Re (6% o 2 ReF'(6%, ¢

S Ry 2nerE
- aT (20)

Re F'(6*.c
x8+ % =="V'x
oT

The solution of the Eq. 20 may be written in the form:

AEO=Y TP Di(B) (21)
1=0
Where A 1s an arbitrary constant.
Finally, 1t comes:
Re . F(&*, a.
ICIRTIEPESIRE LS
G +ar,, ZREFER)
o
(22)
. Re F"(6* Re.F(6*
@i+ 2+ 0.0 ReF(E.0)
o o
A+ .G+ 2+A)] ==Y [@¥,,,+ 20",
2+ G+ G0+ 2+ AN+ DG +A) G+ 2+)]
with boundary conditions,
@ (0)=0, PO) =040 -+a (23)

Tt is the fourth order differential equation of small
perturbation of the flow for any Reynolds number, Re,

622



J. Eng. Applied Sci., 2 (3): 619-624, 2007

When v_< < 1, the second member of the Eq. 22
disappears and it comes:

N D" G D) - D", (
2ReF(E".)

Re.F(0%,0)
—

() + D,

o (24)

Re.F'(0%0) ReF(0%,0)
x .

D, 0+ 2+2).(
o ¢

A+ 2+ 2+ A0] =0.

So that the Eq. 24 adapts to the numerical
processing, it 1s necessary to standardize, the function
@(0), like its first and second derivative. The Eq. 24
becomes:

D" (00 )R (i AP DO * o) =

®,0% a) B D 60 o 0
Cl
. (25)
72'%'2(8*’ D g0 %) (121 )
ReHO% 0 p e o) ofit 2) (11244 )
04
DB, 0)=0,D(6*, o) = DatB*=+ (26)

Consequently, 1t 1s necessary to solve this second
order differential equation analytically by seeking its
general solution.

The perturbation model: The combination between (10),

(11), (16) and (21), with the dimensionless variable =r.
(-w)" leads to:

12 G+ x).f(i”“’l).qai(e*, )

Y

1

27

i+a-1) P 0%0)
o

We choose, now, a model such as in point M (r=1,
6 * -B ) (divergent or convergent flow), the
components u, = ug (Fig. 6).

At pomnt M, Eq. 27 may be expressed in the one
dimensional form:

Z( o) [+ M) @ (6% o) +——"— ]=

with, (-) = 22, we obtain finally:
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Fig. 6: Perturbation model

(29)

2 400D, (0, oy 2RO
(0]

=0

It 15 a polynomial of degree 1 (1=0, 1, 2...., N) where the
unknown factor (- z) * which 1s "the frequency” of the
perturbation and [+ D, (6 ¢ )

+ PIe*, o) ] are complex (integral form ).
o

coefficients

Consequently, the studied flow will be stable or
unstable according to whether the real part of (- %) will be
negative or positive. The resolution of the polynomial (29)
is done by the bairstow method intended for resolving the
algebraic equations with real coefficients. Once rendering
the complex coefficients in real nature, we can apply the
bairstow method.

RESULTS AND DISCUSSION

We observe as well in divergent charmel as in
convergent channel, that the values of frequencies of the
amplification of the small perturbation (Table 1),
superimposed to steady Jeffery-Hamel flow, have a
coherent behavior.

On the one hand, 1t appears that a symmetrical flow
(Q(O) in convergent channel, everywhere stable is
possible for any angle 2¢(tand for any Reynolds number.
So that, which is theoretically confirmed by the solutions
of Navier-Stokes equations, with a very lugh Reynolds
number (Re >>1 ), the Jeffery-Hamel flow would correspond
to a no-viscous potential flow. On the other hand, it
appears that a symmetrical flow in divergent channel,
everywhere stable (Q>0) is possible, for a given angle «,
only for Reynolds number, Re, not superior at limiting
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Table 1: Values of perturbation frequencies
Convergent chammel Divergent channel

Rea Frequencies w Rex Frequencies w
0.0000000E+00  -0.9978040E+00  -0.0000000E+00 -0.9978040E+00
0.3000000E-02 -0.1685628FE+01  -0.3000000E-02  0.1686628E+01
0.6000000E-02 -0.1685062E+01  -0.6000000E-02 -0.1687284E+01
0.9000001E-02 -0.1684278E+01  -0.2000001E-02  0.1687869F+01
0.1200000E-01 -0.1683648E+01  -0.1200000E-01 -0.1688542E+01
0.1500000E-01 -0.1682995E+01  -0.1500000E-01 0.1682188E+01
0.1800000E-01 -0.1682365E+01  -0.1800000E-01 -0.1689714E+01
0.2100000E-01 -0.1682055E+01  -0.2100000E-01  0.1690272E+01
0.2400000E-01 -0.1681350E+01  -0.2400000E-01  0.1690915E+01
0.2700000E-01  -0.1680684E+01  -0.2700000E-01  -0.1691659E+01

value, Remax. The point (&, Re,,) is indicated like the
return point (or inflection point of the flow) like illustrated
m (Fig. 4 and 5). The solution in divergent flow thus does
not tend, as for the convergent flow, towards the solution
of the Euler equations. When the Reynolds number
increase, the stationary flow in divergent channel
becomes unstable beyond the limits value Re=Remax and
it appears a solution for which the velocity has a max and
min values. The number of minimum and maximum
mcreases mndefinitely in the time. Actually, 1t 1s the birth
of an mstationary flow (turbulent).

CONCLUSION

In this study one tried to contribute to the study of
Jeffery-Hamel flow stability. With this intention, on the
one hand we have studied dynamically this flow by
determining his basic field. On the other hand, we have
followed the evolution of the perturbation added to the
stationary solution, to give an answer on the stability of
Jeffery-Hamel flow. The process of the evaluation of the
perturbation was carried out numerically for an arbitrary
Reynolds number. In this stage of calculation, several
numerical methods such as: fourth order Range Kutta
method and Bairstow method were used.

Finally, to improve the obtained results by recording
the incomsistency due to the many approximations
brought to the methods of numerical processing of the
perturbation evolution in the time and to give an answer
on the J-H flow stability, it is necessary to solve the
general equation of this perturbation in its two-
dimensional form.
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