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Abstract: This study presents a continuous approach for the derivation of self-starting multistep methods for
the numerical treatment of ordinary differential equations. The popular k-step Adams Moulton class requires
single step methods to obtamn the (k-1) starting values. In this paper we consider a collocation approach at the
various interpolation points to obtain a set of k-multistep methods. The set of methods are of uniform order and

A-stable. Two examples are presented here.
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INTRODUCTION

Comnsider the imtial value problem

Y(x) =f(xyx)); yO=y; y,R" (1.1)

Classical multistep methods to solve the ivp (1.1) are the
basis of some important codes for non-stiff differential
equations as discussed in many texts such as Dahlquist
and Bjorck, 1974; Fatunla, 1989, Hairer et al, 1996;
Onumanyi et al, 1999. The general k-step method is
written as

k k
Yoy, =hYBL, o, %0 (1.2)
1=0 j=0

where .= 0 are real parameters, .. 0, .-~>0 whenever. = 0
mn (1.2), the method 1s said to be explicit otherwise it 1s
implicit. Explicit multistep algorithms based on rigid frames
were proposed by Crouch and Grossman in Lambert
(1991). For an application of (1.2), we require a starting
procedure to compute the approximates y, y, ..., ¥ to
yixth), yxt2h), .., y((xH(k-1)h). This has been the
standard approach to implement multistep methods. All
computer codes will have to integrate as a subroutine
codes for single step methods like the Runge-Kutta
methods. Butcher (1975), introduced the concept of
multistep Runge-Kutta methods. In contrast to single-step
methods, where numerical solution 1s obtained solely from
the differential equation and the mutial condition, to
implement these methods, there are three basic ways of
obtaining the initial starting values at each stage of the
iteration: using the Taylor series expansion of the exact
solution, using any single step method such as Runge-
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Kutta methods, or using a low-order Adams methods. The
motivation for this paper is the possibility of evolving a
numerical approach that will circumvent the conventional
search for single step or lower ordered methods to obtain
starting values. The negative effects of the other methods
used might divert the trajectory towards instability. The
idea 1s to get self-starting multistep methods that will
preserve both its initial accuracy and stability properties.
Generally, to implement the multistep methods (1.2) most
users resort to single step methods. These are methods
which use only one starting value at each step. The most
popular of this class is the Runge-Kutta methods.
Lets beaninteger anda, a, ...,a,a,...ab, ..b,c, ..,
¢ be real coefficients. Then the method
y. = y+hibk+. +bk) (1.3)
1s called an s -stage Explicit Runge-Kutta method (ERK)
for wvp(l.1)where the ki’s for (1 =1, 2, ..., s) are defined as:

k = fix, y) k = f(x+ch, ythaklk = f(x+ch, yt+hlak+ak...,;
k = fix+ch, y+hak+. . +as,s-ks-))

Usually, the ¢i satisty the conditions

(1.4

Tn general, let bi, aij(i, j =1, ..., 8) be real numbers and

let ¢ :Esau then an s-stage Runge-Kutta method is
1=1

given by
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k, =f(t, +ohy, +hY a.k);

v, =y, + hi bk~ (1.5
= i-1
whenever a= 0, for i j;wehave (1.3)i.e. ERK andifa=
0, for i <jand at least one a. 0, we have a diagonal
umplicit Runge-Kutta methoed. If all diagonal elements are
identical, a=, for1=1, ..., 8), then (1.5) becomes a singly
diagonal implicit Runge-Kutta method. In all other cases,
(1.5) 15 called an implicit Runge-Kutta method.

In the past few decades, the desire to make the
advantages of multistep methods accessible to single step
methods in particular Runge-Kutta methods led to many
well known approaches in literature such as the
generalised multistep methods of Gragg and Stetter,
modified multistep methods of Butcher et al. (1975, 1980),
the hybrid methods of Gear in Dahlquist and Bajorck, 1974
and the parallel methods of Fatunla (1989).

A GENERAL INTEGRATION PROCEDURE

Comnsider the system

Y =f05y), yx,) =y, 2D

where { satisfies the Lipschitz condition of the existence
and umqueness of solution. Let the general linear
methods be represented as

U= SU+h(x, u, h) (2.2)
where 3 is a square matnx and , 1s an m>n matrix. Let m be
the dimension of the differential Eq. 2.1, g m be the
dimension of the difference Eq. 2.2 and x = x+nh be the
subdivision points of an equidistant grid.

The Integration procedure can be
three parts:

splited into

A forward step procedure. S 1s independent of (2.1).
A cormrect value function z(x, h), which gives an
wnterpretation of the values U, z = z(x, h) 15 to be
approximated by u. It 1s assumed that the exact
solution y(x) of (2.1) can be recovered from z(x, h).
A starting procedure . (h), which specifies the starting
valueu=.(h), .(h).z = z(x, h). The discrete problem
arising from (3.10) is given by

U=8SU+th.(x,u,h);n=0,1,2,..;U=.(h) (2.3)
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RESULTS

In this section we discuss the two examples of the
new continuous collocation approaches to formulate self-
starting multistep methods. These are

Block Hybrid Using Simpson Interpolant with
continuous formulation
The power series collocation method.

Example one: The new block hybrid method using the
simpson interpolant: Consider the continuous collocation
approximate to the ivp (1.1)

yix)= Zt]al ()Y, T Zs]hnﬁifnh G

1=1 1=1

where n = 0, k, 2k, ..., j; t and s denotes the number of

interpolation and collocation points respectively, his the
variable step-size. and x . x# x where

a (x)=3C.9,)+ Y C 0 (x) and

=1 r=t+l (32)
hnBi (X) = Zcrlq)r(x) + 2 crlq)r(x)
. are elements of the inverse matrix C.
Let Y (x)=a. (x)ra. x)+.4a.(x); x x. x(3.3)
Imposing the following conditions
ad (x)+a0,x)+. +ad,xi=y; j=L2%..t (3.4)
a0 ) tadi(x) +..rad(x)=f;, i=12..s
Let a-= (alaaza“'aap )Ta q) = (q)liq)ZD"':q)p )Ta
E = (yn+1"'"YTJ+t’fﬂ+1""’fﬂ+S)T
[d.(x) 0,(x) B, (%,) |
D=|¢,(x,) 0,(x,) 9, (x,) (3.5)
dc) o0 ¢, (c,)
bie) dyle) 0,(c.)|
We then have
Da=F=a=D'F=CF=C=D" (3.6)
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Rewriting (4.3) as matrix multiplication of the form

Y(X) = (al:aza"'aap)T'(q)l:q)z:"': )T = aTq)(X) = (EE)T (I)(X)

= Warro Yo faso o fan CO G0, B
(X):¢t+l(x)=--->¢t+s(x))
where
S Ciz il Ciint Crist
Ciz Cys Crz Ciirz Ciisz
Cij: Ot Cat Gy Cript Cryt
Cl,t+1 Cz,t+1 Ct,t+1 Ct+1,t+1 Ct+s,t+1
_Cl,t+s C2,t+s Ct,H—s Ct+1,t+s Ct+s,t+s_
(3.8)

Substituting back into (3.8) into (3.7) yields the
following continuous scheme:

1=0

Y60 = Pr iy, +h, Y wik, (3.9)
where

T(x)= Zcm () + 2 Cy, (%) (3.10)

W (x) = 2 Lrelas 2 hﬂ $.(x) (31D)
which is equivalent to
Y(X) = H‘il|:i C1+1 J+IYn+J + 2C1+1 Tt n+J :|>(l (312)

=0 =0
We consider a particular case with the following
parameters:

k=2t=1.m=k+2;

T(x%X); (%, =X,.X,

= X3 X = XM%;XZZsz)

n+l>»

Putting these parameters and follow through the algorithm
described above, we obtamn the following continuous
scheme:
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x ) +os(x X, ¥

Lix- X)+(X X))

1 _
1263 (x £+

n

yix)=y, +

th(x X) _h2(x X)+ (x— X)]fn+1+
3%[ Zix-x ) +i(x - x)—S(x x))} at
[f(x X)iahz(x X)+ (x X)}

(3.13)

Collocating (3.13)at the pomnts x =x; x =x3 and x =x
we obtain the following three discrete schemes which is
the new Block Hybrid method:

Vou = Yo + 226, + 7E,,, — 4, 5+ (3.14)
Y =Ye Tal7f, +30f,, —8f . +3f,,, (315)
Voo = Yo HAIE, +4F,, + 1] (3.16)

Note that (3.16) is the recovered h/3 Simpson’s
method which is both a maximal and optimal multistep
method Dahlquist (1974). Going through the standard
analysis for multistep methods, the three methods are of
uniform order four. The Table 1 shows the respective error
constants of the methods.

Stability analysis: We verify using the root condition of
the first characteristic polynomial of the hybrid block
method

3 AR (3.17)

1=0

p(R) = det{

} = de‘[[RAn

A

Solving (3.17) for R, we have that Rj<1, j = 1,2,3.
Hence the method is zero stable. Since it is of uniform
order greater than 1,
convergent.

Using the stability function

it 1s consistent, therefore it 1s

M(z)=B,+ ZA (I1-ZA,) "B, (3.18)

Table 1: The standard analysis for multistep methods, the three methods
are of uniform order four

Method
{(3.14)

Error constant
31

2880

51
S
i §
30

{3.15)

{3.16)
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where Aand B are the partitioned matrices for the block
system:

Al ‘ Bl

y1+ y17

: AZ ‘ BZ 1

we obtain the following matrix equation:
v, J[o o o 0o | 0o 1] f ]
Ve | 21 0% 4|01 L
Yo | | @ w ow |0 1|t

v |F5 5 0 3 10 ], | G

Yn+2 % % 0 % ‘ 0 1 fn+1
AN R L

By obtaining the stability polynomial .(,,) = det(I-m()))
through the substitution of the matrices A, A, Band B
into (3.18) and resolving it , it becomes obvious that the
block method 1s A stable.

Example two: the power series collocation method: The
power series approach earlier described in the earlier worlk
of the author Fato Kur, 2004 1s used as the basis for
collocation approximation with the Legendre Polynomials
as the perturbation term. The Legendre function is
transformed from [-1,1] into [x, x]. The exact solution of
the perturbed form for the equation (1.1) 1s given by

XE[X,.X ) k>0 (321)

k
¥ (3= Ya,Q,k)

where Qj(x) = x; . 0is the power series. If we subject
equation(3.20) to the constraints

V%) = Vo =002,k -1 (3.22)
and the following collocation equations
Vix, ) =f, and ¥(x,, )=f . (3.23)

In addition we use the - parameter as the perturbation
term defined as

ian] (x) =f(x,y) + TB(x) (3.24)

where P(x) is the Legendre polynomial of degree k and
valid in xxx and .1s a parameter to be determined.
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Table 2: The conventional analysis on order and error constants of the
schemes (3.26)-(3.30)

Method
{3.26)

(327
(3.28)
(3.29)
(3.30)

Frror consfant
-1
56
il
32
-1
93

=79
12500
=
73

For a particular k = 5 in (3.21)-(3.24),
continuous scheme as follows:

we the

Xi +4 )as + (X4 B Xi+4 )a4

2
Xn+4 )az + (X - Xn+4 )al

FX) = Yy 0 -
+(x' =%, Ja, +(x -

(3.25)

Collocating (3.25) at the following grid pomnts x, x, x,,
x. and x we obtain the following system of discrete
schemes:

v —y _zh{ ks + Lk, } (3.26)
S +§4k3+§5k2+§6 1
_ k. +mnk.+n.k
yn+lyn+4——h{n‘ o 1 TR } (3.27)
e [tnk, +nk, —nk
~-h |3k, -8k, -3k, (3.28)
yn+2 Yn+479 {8k—8k+8k}
— ks =ik
yn+3_yn+4 = { : e } (329)
s -1k, + vk
k. +p.k. —pk
Yn+5Yn+4—L{p1 s T P2 TR } (3-30)
Sde |k, —psks gk

Where
.=1680 and the k’s are the derivative functions, while the
coefficients of & 's are as given below:

=137, =1667,~12122, 72662, =11437, =2215, =21, = 462,
=2352; =1302; =987, =84, .=5; =4897; =20782; =4082;
=647, =163, =188; =6211, =11686;, =3664;, =1286;
=211;=31161; =83721; =37914, =1800¢;, =4719; =465.

Followmg the conventional analysis on order and
error constants of the schemes (3.26)-(3.30), we obtain the
following results in Table 2:

IMPLEMENTATION PROCEDURE
The methods of examples (1) and (2) are mmplemented

as parallel methods for accurate and fast process of
numerical integration. Since each of the methods are
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implicit, at every stage, the values of the approximates
(¥, v ...y of the previous iteration serves as automatic
predictors for the new stage in the integration. Thus the
block of these can be implemented
simultaneously without seeking for any single step
scheme.

schemes

CONCLUSION

Two major examples of self starting multistep
methods by collocating the continouos methods have
been presented. The resulting methods are analysed for
accuracy, stability and convergence. Implementation is
to be done wvia parallel computing. The methods are
expected to be well suited for stiff differential equations
because of the A-stablity property. Work is ongoing in
the aspect of introducing hybrid points in example Two
particularly using the Gauss pomts hence amiving at
Radau-like methods but with better anticipated results.
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