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Abstract: Practical experience with the modermn gear analysis methods (e.g., ISO /6336, BS 436, DIN/3990)
suggests that they may be too pessimistic for fine-pitch gears mn which the effects of gear maccuracies are
considerable. These inaccuracies may contribute significantly to the variability’s and uncertainties of the
applied and permissible stresses. In this research all the individual manufacturing errors are treated as random
variables. The applied torque and other factors which in practice may also be uncertain are taken here as
constants. Two probabilistic methods are developed in order to establish a statistical analysis for the applied
and permissible stresses used in the ISO/6336 procedure. These give a more realistic estimate of the actual
stresses and strengths for given (or assumed) random distributions errors of the individual manufacturing
errors. The two statistical methods developed in this work have shown substantial agreement in predicting the

Life and the reliability of fine pitch gear pairs.
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INTRODUCTION
To be considered as  satisfactory, gear
drives  must operate as predicted at the
design stage. Poor gear performance generally

results in gear failures which may be originally
due to:

*  Pitting fatigue caused by contact stresses exceeding
the strength of the material.

*  Tooth breakage
exceeding the bending fatigue strength of the
material.

caused by bending stresses

» Other surface failures associated with poor
lubrication conditions such as scuffing, scoring and
wear.

The methods currently used in practice for predicting
the stresses present during the operation of gears are
usually those given by one of the common gear rating
standards such as ISO/6336 (1996) , BS 436 (1986) , DIN/
3990 (1986) and AGMA 2101 (1995). All these above
standards adopt a fundamentally similar approach and so
IS0/6336 will be taken as an example.

Stresses in real gears: The Hertzian and root bending
stresses applied to areal gear can be written as follows:
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Tt is difficult to identify accurately all factors that
contribute to increase the uncertainty and the variability
in the applied contact and bending stresses. However
providing the applied load is known and constant (which
is the case in this research) and since the uncertainties of
the geometric factors (with the exception of (Yg)) are
neglected (Pennell, 1987), the variability and uncertainty
i oy and 0 can then only arisedue to the gear accuracy
factors (K, Kyp Ky, K and Kg). In the standards
(ISO/6336, 1996, BS 437, 1986; DIN 3990, 1986, AGMA
2101, 1995) mentioned above, the fuindamental accuracy
of each gear 1s defined by the accuracy of profile, lead and
pitch of the teeth relative to some defined axis and the
mounting accuracy of the gear relative to its (working)
axis of rotation. Error tolerances are then given by the
accuracy grades defined in the gear accuracy standards
(TSO 1328, 1995, BS 436, 1972, DIN 3962, 1978). However,
the combined lead error of the teeth is usually the most
critical accuracy factor in determiming the load capacity of
gear pair especially for fine pitch gears. Since, for similar
gears of the same material (1.e., the same stress level), the
ratio of teoth misalignment to the elastic deflection (£,/8,
used for Ky caleulation) (ISO 6336, 1996), 1s higher for
fine pitch gears. This makes their face load distribution
inherently worst and consequently explains why careful
analysis of manufacturing errors is particularly necessary
for fine pitch gearing.

In general, geometric errors those affect gear rating
resolve themselves into three types; errors affecting the
dynamic factor, those affecting face load distribution
factors and those affecting load sharing between adjacent
tooth pairs. In addition to these geometric errors,
variations in material quality {(composition, cleanliness
hardness, etc.) and in surface finish also affect the fatigue
strength and hence the gear rating.

We are thus concerned with the general problem of
determining the statistics of functions (0, 05) of n random
variables (K., K5, Ky, Ky and Kip), whose statistics can
be calculated in their turns. This problem has been solved
both analytically and numerically as set out below.

Statistical analysis by using the analytical method: To
devise a rigorous analytical procedure for calculating the
mean and standard deviation of general functions of n
random variables 13 practically not possible. It is, in fact,
very difficult to find the probability density function, even
for a general fumction of more than two random variables.
However, for reliability problems (where the random
variations of each variable can be assumed to be "small»)
the Taylor series approximation (Zhang, 2003; Michalec,
1966; Haugen, 1980) can be used as an adequate method
for combining the random variables.
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The general expression for a function of several
independent variables X, 3,...., X,
can be written as:

........... (3

Expanding this by means of a Taylor series in the
region "near” the mean values, of the n vanables, we
obtain:
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In most engineering error problems, values of the
higher order terms in the expansion are considered to be
small compared with the mean values and first order terms,
are therefore neglected. Using standard procedures,
(Kapur and TLambertsonb, 1977). We then obtain the
mean as:

Y =(X,.X,.. X)) (5)
while the ( small ) random variation of Y 1s given by:
& dY
AY=Y T AX (6)
2 ™%

where AX = (x -X ). s the vanation of X; from its mean.

Thus AY is a linear function of the AX; so, using
standard theorems (DIN 3962M, 1978; Zhang, 2003;
Michalec, 1966), the resultant standard deviation of Y is
given by:

& 0Y
Gy —J;(K . .UX‘)Z (7)

It would thus appear that all that is needed is to
compute Ky, Ky Ky, ete., using the ISO calculation
procedure (ISO 6336, 1996). These values could then be
used, 1n turn, to compute (using Eq. 1,2) the statistics of
0y, Oy etc.

A direct computation of 0(ay), 0(0yp) 0(0g), and 0(0yg)
from the above equation is not, however, possible, since
the factors Ky, K, and K, (Kg Kg) are NOT
independent variables (since K, depends on K, and K,
1n turn, depends on. K.

Nevertheless, since Sandler (1984) has shown that the
variability of these factors 13, m fact, small (Table 1), it
seems worthwhile pursuing this approximate method.
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Table 1: Estimated Uncertainties in ISO and AGMA Gear Rating Factors from (13)

+ax +1% +2% +5% +7.5% +10% +15% +20% +40%
Method ISO AGMA ISO ISO AGMA ISO AGMA ISO AGMA BOX BOX
Xi Zy 1 Zy L Ch 8 H lim S Ky Csp n X
K
Zg Zy CL Ky Cy S

Zy Ce

Zp

Ly

One possibility 18 to ignore the dependence of the
factors Ky, Ky, Ky, 1996, This leads to a simple practical
method for computing the mean and standard deviation of
each factor affected by manufacturing tolerances and
thus, the statistics of the resultant stresses and strengths
1n the calculation procedure (130/6336, 1996). This method
is presented in the following section, in which K, K and
Ky are considered totally independent. On the other
hand, an exact derivation of the standard deviations is
also possible, although more tedious. The author had
done this, where the interaction between K, Ky, Ky, is
fully taken into account.

Mean and standard deviation have 0, 0z Assuming that
are K, Ky and K,, independent, the mean and
standard deviation of o0,, 0, can then be derived from
Eq. 5and 7 as:

_ — _—  _ FE u+1
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And neglecting variation of all but Ky, Ky, Ky, etc.
and carrying out the differentiation, we obtam for the
standard deviations:
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Both of these can then be calculated using ISO
formulae for Ky, Kyp, Ky, ete., (1996).

Mean and standard deviation of 0,, 0,: Although the
variability in the material strength arises from changes in
many parameters (1S0/6336, 1996) only the material
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hardness and the roughness factors (Zp Zgp.r) are
considered here as manufacturing random variables
(since, in the experimental worls, it is not possible to
measure any other material parameters). However,
according to the ISO calculation procedure (IS0/6336,
1996) the parameters 7, and 7, also depend on the
hardness, but only for through-hardened steels.

The mean and the standard deviations for 0 O may
then be obtained from (IS0/6336, 1996) as:
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Finally equations for standard deviations may be

written as:
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Statistical analysis by using monte carlo method: The
statistics (mean and standard deviation) of the parameters
Ky, Kig. Kio Op, 05, oto., can also be estimated by using
Monte Carlo simulation (Haung, 19801 Al-Shareedan,
1987). The simulation process involves generating a
succession of random numbers with uniform distribution
over the interval (0.0-1.0). These sets of random values
can be then used to generate synthetic values for each
manufacturing error (in the prescribed tolerance range).
For example, to obtain random values within the tolerance
bands of any manufacturing error having a umform
distribution over 0.0 to 1.0 with a mean equal to 0.5, the
following equation may be used.
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5] +e
g =—2% MW 4+ (R. —-05
(Bw ~Cuin ) =8+ (R —0.5)T,

Where ¢, is the required random value of the error (), e,
and e, are the maximum and minimum (tolerance) limits of
the specific manufactuning error (e), € 1s the mean value of
the error and R, 1s the random number from a standardised
uniform rectangular distribution described by: R =0.5

and g(R) =1/ (243)
For a normal distribution of , the equation (1)
becomes:

(17)

e =0(e)Z +e

Where & and o(e) are the required mean and standard
deviation of the normal error (e) and 7, is a random value
from a standardised normal distribution described by
statistics 7 =0 and 0(Z) = 1. Generating a succession of

many values for the error (e, from Eq. 18 or 19 will
simulate exactly what happens during actual production.
The other manufacturing errors e (i = 1, n) (may be
generated in the same or different distributions. The
statistics (mean and standard deviation) of a parameter
such as oy Eq. 1, which depends on the e, can then be
determined by calculating a sufficient number of oy, using
successive sets of the random values e,

A computer program has been written to calculate K.,
K Kup On, Oyp, ete,. (and the corresponding "bending
strength” parameters) from randomly distributed values of
the wvarious gear errors generated in this way. The
statistics of the performance parameters were computed
from 8000 sets of random mput data. The results are as
shown in Fig. 1 to 4.

Both the Monte Carlo and the analytical methods
have been used to estimate the statistics of the various
parameters (Table 2). The manufacturing errors that are
considered random variables are assumed to have
rectangular distributions and their tolerances are taken
according to ISO/6336 (ISO 1328, 1995).

To verify the proposed statistical methods, Table 3
shows the characteristics of the gear pair taken as an
example. Both gears were manufactured from a case
hardemng steel having as MO material quality (ISO/6336,
1996; DIN 3996, 1986).

The numerical results from both methods are shown
in Table 3 . Figure 1 to 4 shows the histograms of the 8000
calculated values for each parameter under consideration.
As can be seen from Table 3, the results of the exacts
analytical method are in good agreement with those
calculated by the Monte Carlo method (for which the

497

1600 1

1400 A

1200 1

1000 +

300 1

600 1

Frequency of occyrence

400

200 1

—
2000 2200

|—|,|_|r

1200 1400 1600
O (Nmm ™)

M
1000 1800

Fig. 1: Distribution of 0, (Mean=1775.44 N mm,
STD=189.48 Nmm = T,=16.33 N.m)

800

600 -

400 1

Frequency of occyrence

200 4

|_|I_I

2300 2350 2400

0

2050 2150 2200 2250

Oy (Nmm )

2100

Fig. 2: Distribution of 0,4, (Mean = 2203.73 N mm , STD
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interaction between K., K,;; and K, is automatically taken
into account). The maximum error of the exact analytical
method in estimating o (oy) and o (0p) is of order 10%.
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However, oK, (0K;,) has only been estimated with an
error of order 24% (because the variation of the individual
errors was not small. Clearly, however, this error has httle
effect on the statistics of the parameters of interest oy, O;

498

Table 2: Specifications of test gears

Test gears specifications Pinion/Wheel
Normal module (mm) 0.847

130 quality 8to 10
Number of teeth 35/75

Face width (mm) 12.25/12.25
Pitch diameter (mm) 30.876/66.163
Normal pressure angle (o) 20.0000°
Helix angle (3) 16.2333°
Applied torque (Name) 16.3/34.9
Application factor 1.000
Endurance limite oy i (N mm™) 1444.0/1444.0
Endurance limit og s (N mm—2) 401.5/401.5

Table 3: Results of the statistical anatysis for the gears of the experimental
investigation (T;=16.23 N.m and N; = 3x10%)

180
Prameter name
(Mean, STD) A B C D
e -4.508 -4.862 -4.508 -1.862
O 3234 32,197 32.335 32,197
fY -32414 -32.80 -32.414 -32.80
ofpr 13.605 13.684 13.605 13.684
Ky 1.085 1.086 1.085 1.086
oKy 0.023 0.024 0.023 0.024
Kup 4.263 4.383 4.247 4.383
o K 0.99 0.914 0.985 0.916
Kz 3.405 3.499 3.394 3.499
o Kgp 0.683 0.619 0.680 0.620
K 1.362 1.346 1.388 1.346
0 Kiy 0.173 0.168 0.238 0.188
g 1771.17 1801.85 1775.44 1801.85
olon) 257.81 219.72 189.480 172.37
OFy 1246.98 1263.50 1245.30 1263.50
o(ory) 313.72 273.62 226.61 215.68
o2 1281.91 1298.89 1280.18 1298.89
o(Trg) 322.51 281.29 232.95 221.72
Oppy 2203.73 2190.09 2203.73 2190.09
o(Tnpy) 74.31 67.27 74.31 67.29
Ogpa 2211.67 2201.93 2211.67 2201.93
o(Tnpa) 64.88 60.86 64.88 60.86
aFP1 1060.34 1059.15 1061.34 1059.15
o(Cpp1) 27.27 28.22 27.27 28.22
Trpa 1153.18 1151.64 1153.18 1151.64
O(Oppg) 28.47 29.59 28.47 29.59
A = Monte Carlo Approximation, B = Taylor Approximation
(withoutinteraction)  .(withoutinteraction). C = Monte Carlo

Approximation;D = Taylor Approximation (with interaction) . (with
interaction)

due to the fact that o(0;;) and o(o;) are mainly defined by
oKy and 0K (0K, and oKy, are always small).

On the other hand, the simplified analytical method
described above shows a maximum error of order 32%.
Approximately the same values are however, also found
by the Monte Carlo method if the interaction between K,
Ky and Ky, 1s removed (columns A, B, Table 3). The
additional error caused by simplified analytical method is
thus clearly a consequence of neglecting the interactions,
not a shortcoming of the analytical procedure it self. This
simplified method has, however, been shown to be quite
accurate (less than 15% error) for gears of higher accuracy
grades (IS0 7 and better), when the assumption of "small”
variability can be more easily justified.
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Prediction of life using analytical and numerical
methods: Since these methods deal with distributions, it
15 worthwhile to introduce the gear reliability as a basis for
comparing the results.

As explained previously, it is practically impossible
to find the probability density function of oy, 0y The
only alternative 1s to estimate them by fitting the 0, Oy
frequency distributions obtained from the Monte Carlo
analysis to standard distributions whose density
functions are known. For the gears under consideration,
these frequencies distributions are as shown in Fig. 1
to 4. If we assume them to be individually normally
distributed as shown in Fig. 5 Then the probability that
the strength 0y (04) is greater than the stress oy (05) for
all possible values over the range of 0 (0;) 13 given by:

A =1-%(Z) (18)

R :—1 re_ZHz
H Jﬁ z

Thus the unreliability (the probability of failure) 1s
defined as:

P, = (Z) (19)

Where,

O(7) is the standard cumulative normal distribution
function.

7418 the standard normal variate given by:

z Owr _ On (20)
Jiolo )P +(o(0,,)

Similar equations can be obtained for Ry and Pr.
The reliability clearly depends on the lower himits of
the integral and hence the statistics of g, Oyp.
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Fig. 5. Contact stress strength interference (T,= 16.23 N.m
at N, =3x10"
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A higher
obtained by:

value of reliability can therefore be

Increasing the mean strength aor reducing the

mean stress G, .

Reducing the spread of the two distributions 0(0),
G{0y).

In order to compare the analytical with Monte Carlo
analysis, Fig. 5 Shows contact stress-strength
interference density functions obtained from the
analytical and the Monte Carlo methods for gears at lives
of 3x10°. As can be seen both methods are in good
agreement.

Figure 6 shows the reliability that can be expected for
different torque ratings for a life of 5x10° cycles. As can
be seen the gears should be rated to only about 0.78 KW
for 99% reliability.

An imteresting feature witch may be obtamned from
these theoretical 1s the fact that, once the statistics [
stress and strength for a specific gear assembly have
been calculated at a fixed life, the results can then be
adjusted to give the reliability at any number load cycles
in the fimte life region. All that changes as the life 1s
varied are the mean strength G_HF witch varies in

accordance with the life factor 7, so that:

(21)

If the coefficient of variation (O(OHP)/(G_HP) 18

assumed to be mdependent of life (giving parallel (SN.P)
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Fig. 6: Reliability vs pimon torque of the gears at
N, =35x10°
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curve on a log-log plot as shown in Shareedah and Alawi
(1987). Then all we need to do is recalculate the standard

variate as:
()
Jotow) {707, ) toton)

Where 7, 1s the new life factor and 7 1s the life factor for
witch the statistics of 0, were first calculated.

HP GH

Zy (22)

Another important quantity that may be determined,
once the statistics of stress and strength are known, is the
safety factor. For the special case where oy (0;) and 0y
(0pp) are normally distributed, the safety factors Sy (Sp)
may be extracted from Eq.22 as:

J(o(0,)) + (0 (o))

Ox

Sy =1+ 7, (23)

Tt is clear that the safety factor defined above is
directly related t reliability (via Z,) as well as t the quality
control of both the material and gear geometric accuracy.

CONCLUSION

The main objective of this work was to develop
simple practical methods for predicting the effect of
random manufacturing tolerances and material variation
on the performance of fine pitch gears. Two theoretical
methods were developed in order to predict gear life and
reliability.

The following general conclusions were obtained:

For similar gears of the same material and the same
stress level, fine pitch gears have higher face load
distribution factors than coarse gears (where the elastic
deflection 1s small compared to manufacturing error). For
equivalent performance, fine pitch gears must be of higher
quality.

The analytical method developed in this work and the
Monte Carlo method in substantial agreement in
predicting the statistics of the applied stresses and
strengths as well as the reliability of gear pairs.
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Using the ISO method C analysis with misalignment
errors estimated from simplified formulae or, without
allowing for all manufactunng and deflection misalignment
components, can grossly overestimate the performance of
fine pitch gear units. Gear case (bearing bore) alignment
tolerances and mesh misalignment due to bearing and
wheel, shaft deflections were found to be significant in
the gearbox studied.
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