M@dWe.ll Journal of Engineering and Applied Sciences 2 (3): 488-493, 2007

Onlline

© Medwell Journals, 2007

The Response of Initially Stressed Euler-Bernoulli Beam with an Attached
Mass to Uniform Partially Distributed Moving Loads

'LA. Adetunde, °F.O. Akinpelu and *J.A. Gbadeyan
"Department of Applied Mathematics, University for Development Studies,
Navrongo, Ghana
*Department of Pure and Applied Mathematics, Ladoke Akintola University of Technology,
Ogbomoso, Nigeria
*Department of Mathematics, University of Ilorin, [lorin, Nigeria

Abstract: An investigation into the response of initially stressed Euler Bernoulli Beam with an attached mass
to uniform partially distributed moving load 1s carried out. The resulting coupled partial differential Eq 1s solved
using finite difference method. Graphs were presented for the results obtained. It was found that the response
amplitude increases as mass of the load (M) increases under a moving force problem, and also that
the response amplitude increases with an increase in the mass of the load (M) for various values of time

tand g.
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INTRODUCTION

The problem of determining the dynamic response of
elastic structures subjected to moving loads have long
been of theoretical and practical mterest in the field of
applied mathematics, physics and engmeering .The
practical importance of this area of studies 1s that the
mutially stressed beams are commonly mcorporated in the
design of aero planes. Advances in technology have
accelerated utilization of such initially stressed structural
elements. In general an aircraft is subjected to a wide
range of temperature variation during flight, which may
cause considerable tensile or comprehensive pre stresses
in the beams when they are fixed in the plane direction. Tt
15 therefore, of technological interest to investigate to
what extent the dynamic response of the beam 13 affected
by moving loads.

The problem 13 well studied, including several
solutions of the continuous foundation case (Priece,
et al, 2000, Priece and Smith, 2001) corresponding to
the limiting case of a discrete foundation with very small
support. spacing. Staddler and Shreeues (1970), Mead
(1970) have considered energy propagation in aero space
systems of this type, which generally are concerned with
moving loads. Chang et al. (2001) and McGhie (1990)
have previously describes and analyzed a dynamic model
of a long beam on discrete elastic supports applied to the
problem of vibration transmission.
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Fig. 1: The mathematical model of the problem

The approach of the study is to develop a theory for
the dynamic response of a finite initially stressed
Bernoulli beam which carries a lumped mass at one of its
ends, to a distributed moving load The goal is to extend
the analysis of the dynamic response of a finite initially-
stressed Bernoulli beam which carries a lumped
mass at the end X = L. but arbitrary supported at the end
X = 0 to auniformly partially distributed moving load
and to pretend a very simple as well as practical
analytical-mumerical technique to determine the response
of beam with non-classical boundary conditions.

Model development: With reference to Fig. 1, it is
assumed we have a uniform simply supported initially
stressed Euler-Bernoulli beam carrying a mass M. The
load is assumed to start entering the beam of length T,
from the left hand support at t = 0 and advancing uniform
along a beam with a constant speed V .The mass is also
assumed to be uniformly distributed over a fixed length
€ of the beam.
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The governing equation of the initially stressed
euler-bernoulli beam: The equation of motion that
governs the response of initially stressed Euler-Bernoulli
beam carrying an attached mass to uniform partially
distributed load 1s
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Where E is the young modulus of elastic, Tis the
second moment of area for beam’s cross- section, m 1s the
mass per umnit length, p(x, t) 1s the external load, y(x, t) 1s
the deflection of the beam, t is the time, x is the spatial
coordinate, EI 1s the constant flexural stiffness and N 1s
the initially-stressed constant.

As an external load, we considered a uniform partially
distributed moving load which travels with a constant
velocity v 1s expressed as

P(x. )= é [-Mg -MAYGo O] [H (£ 2 1 (£ )]
@)

Where
a* +2\1762 o 9* (3)
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M 1s the mass of the load, g 1s the acceleration due to
gravity, H (x) is the Heaviside function such that

0 x<0 (4)

In view of Eq. 3, 2, becomes
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hence Eq. 1 become
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The associated boundary conditions are

2
%y(x,t) =0 atx=L (7

a’ 0*
EI a—yjy(x,t) e yvix,t)=0atx=L (8)

The corresponding 1mtial conditions are

y(x,0) =0, gx—y(x,t):o att=0 9

Where
M, is the attached mass at x =L,

Reduction of governing equation to a system ofordinary
differential equation: The traverse displacement and
external applied force may be expressed as

yE =39, 1y, (10)
k=1

P -3y, Oy, ) (an)
k=1

Where ¢, and P, are the unknown functions of time
t which have to be determined, v,(x) 13 the known eigen
function of free vibration of beam.

Substituting Eq. 10 and 11 into Eq. 6 and multiply by

y,(x) gives
é[,Mg ¥, (0 My, (O3 6, Dy, () IMVy, (x)
3 8, 0y CO-MXPy, (0 Y g, 0y ko [Hex (12)
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Taking the defimite mntegrals of both sides of Eq. 12
along the length of the beam with respect to x we have
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evaluating the first definite integrals in Eq. 13 by
carrying out integration by parts with respect to x and
using the following properties of singularity function
(Clough and Penzien, 1995).

=2
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Provided x,<x,<x,

d H (x-x1) =8 (x-x1) (15)

&

Similar arguments to second, third to fifth definite
mtegral in Eq. 13, hence evaluating the integrals using
Taylor’s series expansion and applying orthogonality
properties of the characteristics function y(x) to the right
hand side of (13), we finally obtain

v, (= Mely, &+ y"(&)]fMi&Sk(tJ
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=l (16)
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Note that in view of (10) and (11) Eq. 1 may be written as
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The equation of free-vibration of the beam is satisfied
by y(x)for any arbitrary k and 1s

. )
Y ()8, y,(x)= (18)
EI
Substituting Eq. 18 into Eq. 17, we obtained
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Substituting Eq. 16 into Eq. 19 we finally obtain
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Equation 20 is the desired set of generalized coupled
differential equation which holds for any particular set of
boundary conditions of the beam.

Dynamic response of simply supported beam: For the
present configuration, we made use of the Eigen
functions.

yki(x) = sin% X +B, sinhaka k=12 3,..n (21)

Where B, sina, and a, 15 determine from the
sinha,
trancedental equation
sinha,
. .
Cos a, sinha, -sina, cosha, Mimhjak -0 (22
Elak,

We obtain the set of exact governing differential
equation for the vibration of the beam by employing
Eq. 21 and evaluating the values of the integral in Eq. 13
and finally obtain

mi 0, (y, (x) + mim 0,(0)y,(x) ~ N
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a, —a 2 + +
cos 1+, Esin Ita, (—&)+a_cos| =2 +i cosh & %% Esin %
L 2L ? L a, +a L 2L
BT (23)
a, —4a a, +a a, +a 2 - -
Esin| ——2 |g+ cos| —2 |Esin) ——2 + BiL cosht e W B
2L L 2L (a, —a, L 2L
+MB’L| cosh a, ta, £sinh a ta, e Remark: We remark here that two cases were a solved
L for in Eq. 23.
MBZL a, -a a, —a Case (I): The moving force mitially stressed Euler
P : P
*m COSh[ ]&,smh[ ]g Bernoulli beam Problem. By moving force Problem, we
k P

mean the case 1 which only the first force effects are
taken into consideration; by so doing, only the first term

{Siﬂ e“{ a, ta }co:{ a, ta, }g} + on the right hand side of Eq. 23 is retamn, neglecting all the

—2MVa, i ¢k ® a, ta, 2L other terms.
L = L ( _ a, —a, a, —a Case (IT): The moving mass initially stressed
_ sing cas & Euler Bernoulli beam problem. By movi mass
a, —a 2L P ¥ ng
! initially stressed Euler Bernoulli; we mean the situation in
which both the inertia effect as well as force effect are
] | taken into consideration. For the system under
cos[ T8 J&,sin[ T J consideration, the entire Eq. 23 is the moving mass
% a, L 2L + problem
ela, —a,) [1ak] . [lak]
+cos Esin €
2,00E-03+
L ZL — M=7.0dkgm 1
- -M=8.00kgm1
- M=10.004kgm 1
1-a, ). . (1-a, 1.50E-03
cos 3 Esin L
% 1 1 ! '5
+ {1+ 1
£+ cos| Esin T e 2 1.00E-03
L 2L z
5.00E-04+
B.L . a, +a a, +a
E {Slnh&{ i n E ]cosh[ kZL E J8:|
a_+a
(@ ta,) 0.00E+00 o
B, L . a, —a a, —a
—— & lginhE| “E " |cosh| P |g
(a, — a, ) L 2L -5.005-04- Leangth of the beam X(m)
MV? ,& . L Fig. 2: The variation of the lateral deflection of the simply
L*? B 1:2‘1 ¢y (1A (a, +a,) supported initially stressed Euler- Bernoulli Beam
£ _ e L carring a mass at its end x=L and traversed b
cos —(ak ta, )Sln (ak ta, ) _ meoving force, for =0.5s, E=0.1m and different
L 2L (a, —a_) g
k
! values of M
a a — a
{cosi{MJsin{MJe}
L 2L Table 1: The variation of the lateral deflection Yy (x, t) of the simply
supported initially stressed Euler Beam for t = 0.5, £ = 0.1m at
different M
4 cos l+a, £sin L+a, Length of the Wi (5,1) for Wi (.0 for Wi (t) for
B,L P 2L Beam X(m) M, =7.04kg m! M, =8.0kg m™! M, =10kgm™'
7? 1 1 1.4644 4.77E-04 5.42E-04 6.77E-04
aytay) [ Esin| % |e 2.2788 9.37E-04 1.00E-03 1.27E-03
8 L 2L 4.2481 1.06E-03 1.21E-03 1.54E-03
58575 1.06E-03 1.14E-03 1.45E-03
1 1 1 1 T.1215 T.3TE-04 8.44E-04 1.07E-03
+a COS( — A }@Sm{ — A ]S i COS( " }ﬁsin( Ty ]g 8.5353 2.87E-04 3.29E-04 4.17E-04
» L 1, L 1, 9.9501 -2.66E-04 -3.05E-04 -3.87E-(4
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RESULTS AND DISCUSSION

To solve the two cases discussed above, in Eq. 23.
approximate Central difference
formula for the derivatives in Eq. 23. The resulting
equation were solved by MATLAR package for the
following data:

M=704kgm ", 80kgM "and 10 kgm™";m =70,
E=207=x10"NM 3% 1=1.04x10"m" V=12kmh ', g =98
ms LL=10m,e=01mand1.0m, t=0.5s, 1.0s and 1 .5s,
h=001,N=05.

We made use of

Hence we have the following graphs: Figure 2 shows
the wvariation of the latter deflection y{x,t) of the
simply supported initially stressed Euler Bernoulli Beam
carrying a lumped mass at its end x = L. and traversed by
a moving force, for t = 0.5s, € = 0.1 mand different
of M 1. (In this graph, the
deflection y, (x, t) mdicating the moving force 1s
plotted agamst various values of (x). Itis noted here
that the response amplitudes increases as M increases
shown in Table 1. Figure 3 depicts the response curve
of the system for a moving force when t increases

values shown

200E-037 __ 4z 7, 0dicg m 1
-— M=8.00kg m 1
wene M=10.004kg m 1
1.50E-03 // o
.g |
£1.008-03
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5.00E-04+

0.00E+00 r

‘u
X{m)

5
Leangth of beam

-5.00E-04

Fig. 3. Te responce curve of the system for amoving
force of initially srressed simply supported Euler-
Bernoulli Beam carrying a lumped mass at its end
x=L for t=1.0s, E=0.1m and Different values of M

Table 2: The response of curve of the system for a moving force when t =
1.0s, £ = 0.1m at different values of M
Length of the Wy (ot) for Wi Got) for Wi Got) for
Beam X(m) M =7.0dkg m! M;=8.0kg m! M;=0kg m!
1.4644 4.63E-04 5.51E-04 6.88E-08
2.2788 8.51E-04 1.02E-03 1.28E-03
4.2481 1.03E-03 1.23E-03 1.56E-03
5.8575 9.71E-04 1.16E-03 1.48E-03
7.1215 7.17E-04 8.49E-04 1.09E-03
8.5353 2.T9E-04 3.52E-04 4. 24E-04
9.9501 -2.59E-04 -3.11E-04 -3.93E-(4

1.00e-+00 7

3.00E-01 1

0.00E+00 3
g -5.00E-01 -
5 -1.00B+00
=]
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-2.00E+00 4

-2.50B+00 ]

=3.00BH)0 |

Fig. 4 The wvariation of the lateral deflection YM
(x,1t) of the sunply supported imtially stressed
Buler-Bernoulli Beam carrying a lumped mass
at its end x = L. and traversed b moving

t= 05, E 0.1 m and different

values of M

mass, for

8.00E+00 -
— M=T.0dkgm 1
— M=8.00kgm 1
weee M=10.004kg m ™1
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4.00E+0D
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Fig. 5. The responce curve of the system for a
moving of 1mtilly stressed simply
supported Euler-Bernoulli Beam carrying a lumped
mass at its end x=L. For t=1.0s, E=0.1m and

different values of M

mass

Table 3: The variation of the lateral deflection Yy (x, t) of the simply
supported moving mass of initial stressed Bernoulli Beam for t =
0.5¢, e=0.1Im

Length of the Wi (x.t) for Wi (x,t) for Wi (x,t) for

Beam X(m) M =70dkgm™! M =8.0kgm?! M =10kgm

1.4644 -3.89E-01 -3.77E-01 -3.87E-01

2.2788 -4.17E-01 -5.20E-01 -6.88E-01

4.2481 -241E+00 -2 42E+00 -2 ATEHO0

5.8575 -1.42E+00 -1.54E+00 -1.75E+00

7.1215 -1.18E+00 -1.25E+00 -1.42E+00

8.5353 -3.64E-01 -1.17E-01 -1.99E-01

2.9501 5.82E-01 6.24E-01 6.92E-01
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Table4: The response of curve of the system for a moving mass when
t=1.0s, £=0.1m and different values of M

Length of the Wy (x,t) for Wy (x,t) for Wi Got) for
Beam X(m) M;=7.04kg m~! M;=8.0kg m™! M =10kg"'m
1.4644 -6.82E-01 -6.76E-01 -6.76E-01
2.2788 -1.09E+00 -1.26E+00 -1.58E+00
4.2481 -6.16E+00 -6.52E+00 -7.18E+00
5.8575 -5.30E+00 -5.97E+00 -7.23E+00
7.1215 -5.52E+00 -6.23E+00 -T.65E+00
8.5353 -2.05E+00 -2.47E+00 -3.33E+00
9.9501 3.95E+00 4.64E+00 6.08E+00

to 1.0s and e = 1.0m with different values of M shown in
Table 2. we observe that as t increases, the response
amplitudes also increases with increase in M.

Furthermore, Fig. 4 shows the variation of the
deflection y,, (x, t) i.e. the moving mass problem of initially
stressed simply supported Euler Bernoulli Beam carrying
a lumped mass at its end x =T, and traversed by a moving
mass. Shown in Table 3. Fort = 0.5s, £ = 0.1m for varicus
values of M, it was observed that as t increases we also
have the amplitude deflection increasing as M increases.

In addition, Fig. 5, shows the variation of the
deflection y, (x, v) of the mutally stressed simply
supported Euler-Bernoulli beam carrying a lumped
mass at x = L and traversed by a moving mass for
c =01 m, t =1.0s for various values of m. Shown in
Table 4 It was also observed that the amplitude deflection
increases as M increases.

CONCLUSION

We have investigated the response of initially
stressed Euler Bernoulli Beam with an attached mass to
uniform partially distributed load. We have modeled the
problem mathematically in such a way that the mass of
the moving load 1s more compared to with the mass of
the beam.
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The interesting conclusions of the problem are as
follows:

The response amplitude increases as mass of the
load M mcreases under a moving force problem
The response amplitude was found to increase with
an increase in mass of the load M for various values
of ime and e.
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