ournal o wmeert ar 12 Cle1ICes . - .,
MQICIlel Journal of Engineering and Applied Sci 2(3): 472-480, 2007
WBLES © Medwell Jornals, 2007

Optical Flow Computation in Colour Images Sequence
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Abstract: Motion computation is an important and challenging problem in the analysis of image sequences.
Motion computation plays an important role m many applications such as target tracking and
movement/change detection m surveillance systems; in compressing video mmages, if we have already
compressed I (t-1), we know much about I (t). Typical approach for building a predicted image for I (), based
on I (t-1)...etc. There are numerous other applications. From a sequence of images we can only estinate an
approximation of the image motion field called optical flow. Motion estimation and computation in images
sequence 18 a difficult and computationally expensive task. The computation of optical flow 1s an ill-posed
problem, which expresses itself as the aperture problem. However, motion vectors can be estimated by using
differential methods, where optic flow estimation is based on computing spatial and temporal image derivatives.
A typical way to overcome the ill-posed ness problems of differential optic flow methods consists of the use
of smoothing techniques and smoothness assumption as a regularization methods, in which additional
constraints functions are mtroduced. In this research we propose to improve optical flow estimation by
including colour information as constraints functions in the optimization process. The proposed technique has

shown encouraging results.
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INTRODUCTION

The recent developments in computer vision, moving
from static images analysis to video sequences, have
focused the research on the understanding of motion
analysis and representation. A fundamental problem in
processing sequences is the computation of optical flow.
This flow is a 2D vector field resulting from a perspective
projection on the image plane of the 3D velocity field of a
moving scene. Optical flow is a convenient and useful
way for 1mage motion representation and 3D
interpretation. Tt often plays a key role in varieties of
motion estimation techniques and has been used in many
computer vision applications. Optical flow may be used to
perform  motion detection, autonomous navigation
(knowledge of local motion of the environment relative to
the observer system simplifies the calculation time-to-
collision and focus of-expansion for example), scene
segmentation (segmenting scene into moving and static
objects), surveillance system (motion can be an important
source for a surveillance system when objects of interest
can be detected and tracked using the optical flow vector
to define the future trajectories), motion compensation for
encoding sequences and stereo disparity measurement

(Baron et al, 1994; Beauchemin and Barro, 1995, Weickert
and Schnow, 2001). Thus an optical flow algorithm is
specified by three elements (Barron et al.,, 1994):

¢ The spatictemporal operators that are applied to the
image sequence to extract features and improve the
signal to noise ratio.

» How optical flow estimates are produced from a
gradient search of the extracted feature space.

¢  The form of regularization applied to the flow field
considering confidence measures if they exists.

Optical flow estimation and computation methods can
be classified mto three main categories: Differential
approaches, block-matching approaches and frequential
approaches (Baron ef al., 1994).

Despite more than two decades of research, the
proposed methods for optical flow estimation are
relatively inaccurate and non-robust. Many methods for
the estimation of optical flow have been proposed
(Hom and Shunck, 1981; Lucas and Kanade, 1981,
Markandy and Flinchbaugh, 1990; Fleet and Jepson,
1994, 1995, Weber and Malik, 1995; Polina and Golland,
1995; Tsai et al., 1999, Ming et al., 2002, Zhang and Lu,
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2000, Bruno and Pellerin, 2000, Barron and Klette,
2002; Arredendo ef al., 2004, Joachin Weickert et al.,
2003; Thomax et al, 2004, Audre et al., 2005
Volker Willert et al., 2005).

We present mn this study a differential approach
using colour components as constraints functions for
the optical flow computation. Differential methods belong
to the widely used techmiques for optic flow computation
in images sequences. The rest of this study is organized
as follows:

OPTICAL FLOW CONSTRAINT EQUATION

Optical flow 13 the apparent motion of brightness
patterns in the images sequence. It corresponds to the
motion field, but not always. For a rotating barber's pole
example, the motion field and optical flow are different.
The error is small at point with high spatial gradient under
some simplifying assumptions. This is illustrated in Fig. 1.

In general, such cases are unusual, and for this
lecture we will assume that optical flow corresponds to
the motion field

Optical flow techniques are based on the 1dea that for
most points in the image, neighbouring points have
approximately the same brightness. Tn other words, the
world 1s made up of continuous objects over which
brightness varies smoothly. So optical flow can be
computed from a sequence by making assumptions about
the varations of the scene brightness. One such
assumption (Hom and Schunck, 1981) known as the
brightness constancy assumption, is represented by the
following Equation:

I(x,v.t) =I(x + 8%,y + By, t + 8t) (b

Where I (x, y, t) represents the luminance function at pixel
(x, y)yat ime t and (8 x, dy) is the displacement occurring
at pixel (x, y) during &t.

We perform a Taylor development limited to the first
order and we get:

3l 31
- Sy +
Sy at

I(xy.t)=1xyD+ §—18X+ 2
X

Cancelling I (x, v, t) on both sides and dividing by Jt
(2t~0) we obtain:

Lu+lv+I =0 3
Where:

1. I, and I, are first partial derivatives of I, respectively
with respect to x, y and t and u and v are the optical flow

473

 AARRARERARERE

N

Motion filed

Optical flow

Fig. 1: The motion field and optical flow of a barber's pole

A
i Motion
_—
i ! X Direction of intensity
: ;
7/
a
1
i /N
i
1

Fig. 2: The aperture problem

components, respectively in the x and y directions.

Eq. 3 is called optical flow constraint equation. Tt provides
only the normal velocity component. So we are only able
to measure the component of optical flow that 1s in the
direction of the intensity gradient. We are unable to
measure the component tangential to the inftensity
gradient (aperture problem). This problem is illustrated
mFig. 2.

The system is undetermined because we only have
one equation for two unknowns. To overcome this
problem, it is necessary to add additional constraints.
Another problem 1s that are assuming that &t 1s very small.
Since most video cameras generate images every thirtieth
of a second or so, this limit 1s usually not approached in
practice. This means that the dismissal of the lngher order
terms of the Taylor expansion is only a reasonable
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assumption for scenes wiyh slow motion. The sampling

error in the spatial domain also leads to errors in the

computation of the observables I, L.

USE OF COLOUR INFORMATION AS
ADDITIONAL CONSTRAINT

The brightness assumption implies that the (R, G, B)
components of each image remain unchanged during the
motion undergone within a small temporal neighbourhood
(Weber and Malik, 1995). Therefore, R, G and B images
can be used in a similar way as the luminance function:
they have to satisfy the optical flow constraint equation.
Markandey and Flinchbaugh (1990) have proposed a
multispectral approach for optical flow computation. Their
two-sensors proposal 1s based on solving a system of two
linear equations having both optical flow components as
unknowns. The equations are deduced from the standard
optical flow constraint (3). In their experiments, they use
colour TV camera data and a combination of infrared and
visible images. Finally, they use two channels to resolve
the ill-posed problem (Barron et al., 1994).

Golland and Bruckstein (1995) follow the same
algebraic method. They compare a straightforward
3-channels approach using RGB data with two 2-channel
methods, the first based on normalized RGB values
and the second based on a special hue-saturation
definition. The standard optical flow constraint may
be applied to each one of the RGB quantities, providing
an over determined system of linear equations
(Barron et al., 1994):

Ryu+R v+ R, =0
Gu+G,v+G, =0
Bu+Bv+B, =0

“4)

Then the pseudo-inverse computation gives the following
solution for the system:

V=(ATA'ATD (5)
Where:
R, R, R,
1h
A=|G, G,|b=|-G, mm'v_{} (6)
B, B -B v

This assumes that the matrix (ATA) has rank 2, i.e., it
is non-singular. By definition this matrix is singular if its
rank is equal to 1, ie, its columns or lines are linearly
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dependent, which means that the first order spatial
derivatives of the colour components (R, G, B) are
dependent. Since the sensitivity functions Dr (4, Dg ()
and Db(4) of the light detectors are linearly independent,
the first derivatives of the R, G, B functions will also be
independent for images sequence with colour changing in
two different directions. But if the colour 15 a uniform
distribution, the (R, G, B) functions are linearly dependent
or if the colours of the considered region change in one
direction only, the gradient vectors of (R, G, B) are parallel
so that the spatial derivatives are dependent and the
matrix (ATA) is singular. Tn addition to the estimates of the
image flow components at a certain pixel of the image,
we would like to get some measure of confidence in the
result at this pixel, which would tell us to what extent we
could trust our estimates. It 1s common to use the so-
called condition number of the coefficient matrix of a
system (ATA) as a measure of confidence of this system
(Polina Golland, 1995).

To improve this problem, the idea is the use of two
independent functions for colour characterization so that
their gradient directions are not parallel.

If the quantities used here are denoted f and ff. The
colour conservation assumption implies:

futfv+f, =0
ffu+ff v+ 1f, =0

7

Here the solution 1s given by simple matrix inversiomn:

V=A"Db (8)

The ideal case is obtained when the gradient directions of
the two chosen functions are normal. One possible
solution is the use of two different colour systems: the
normalized RGB system, denoted rgb system and the HSV

system (Barron and Klette, 2002).
The rgb system 13 computed m the following way:

. R
R+G+B
G

"RiGIB
B

"RIGIB

g where: r+g+b =1 9)

Tt is clear that any pair of (1, g, b) forms a system of two
independent functions. If we are taking the r and g
components, the optical flow computation system to be
solved 1s given by Eq. 8, where:
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Now we consider the HSV system. This representation
uses three other values to define colour (Hue, Saturation
and Value). While value is an intensity measure and
corresponds to non-chromatic light characteristics, hue
and saturation are chromaticity parameters, encoding the
colour information. Saturation 1s a measure of pure colour
in a certain spectrum (ratio between pure colour
white light) and hue encodes the colour of wavelength
information. Similar to HSV, the YUV model decomposes
the colour as a brightness Y and a colour coordinate
system (U, V). The different between the two is the
description of the colour plan. H and S describe a vector
in polar form, representing the angular and magnitude
components, respectively. Y, U and V, however, form an
orthogonal euclidean space (Robert and Brian, 2003).

For HSV space, V 18 an intensity measure and
corresponds to non chromatic light characteristics, H
and S are chromaticity parameters, encoding the colour
information. S is a measure of pure colour in a certain
spectrum (ratio between pure colour and white light) and
H encodes the colour of wavelength information. The
HSV system 13 computed i the following way:

Iy Iy

gx 8y

A=

} 10)

V=Max(R,G,B),
o Max(R.G.B) - Min(R.G.B)
Max(R,G,B)
G_B_ If R = Max(R,G, B)
Mzx(R,G,B) - Min(R,G,B)
H=12+ BfR_ IfG =Max(R <G <B)
Max(R,G,B) - Min(R,G,B)
4+ R-G If B=Max(R,G,B)
Max(R <G <B)-Min(R <G <B)

(1)

The solution 1s given by Eq. 8, where:

, H -H u
A= Y s b= t and ¥V = |: :| (1 2)
Sy Sy =5, v
MATERIALS AND METHODS

Tt was shown that a colour sequence could be
straightforwardly considered as a set of three different
sequences produced by three types of light sensors with
different sensitivity functions m response to the same
input sequence (Markany and Flinchbaugh, 1990, Polina
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Golland, 1995), So we propose to use the same formulation
as those proposed by Hom and Schunck for the
luminance function and to apply it to the three colour
componernts.

In the first stage we have to minimize a function
error containing the three colour components for the
considered colour space, each component satisfying the
optical flow constraint equation without any smoothness
term, for the RGB space we have:

F=(RyutRy v+ R )P+ (Geut Gyot Gy )?

: 13
Min +(BoutByviB, P (13)

u.v

5 2 2
=R €, 7€

The problem will be posed as finding (u, v) optical flow
components mimimising F. The solution was given by
using Eq. 8, Where:

R2+G2 +B2 RyR
A=

+GyGy + BB

y ¥ ¥
+GyGy BBy RY+GF4BI
RyR, +GxG, +ByB,

Rth + GyGt + Bth

>

RyR

b 14

b=

The matrix A must be non-smgular. The smallest
eigenvalue of A’A or the condition number of A™A can be
used to measure numerical stability, i.e., if the smallest
eigenvalue 1s below a threshold or the condition number
1s above a threshold, then we set the optical flow vector
to be undefined at this image location. So, in the second
stage we add a local (on a small region around each pixel)
smoothness term on the magnitude of optical flow vector
with a weight ¢.. The motion of any object between two
following times (t, and t;+0t where ot ~ 0) 1s supposed to
be very small and it can be used as a small displacement
n any direction. So Eq. 9 with the smoothness term

will be:
F=(RutRyvH Ry +(Grut Gyt Gy

Min (15)

u,v

1
+ (Bx.u+ B, .v+B, )2+50t2 HV”2
:e§+82+8;+e§

Dernving F over u and v and solving the result system.
The same solution 1s found when adding the smoothness
term 1n the function F to mimmize. Deriving This solution
is obtained by Eq. 8, where:
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RZ4+G2 B2+ RyRy +GyGy+ByB

Ao Y

y y _
2 a2, m2. .20
+GxGy +ByBy Ry +05+By+o
RyR, + Gy G, +ByB,

Rth + GyGt + Bth

RyRy

b=
(16)

We do not use iterative method to compute the optical
flow components here and the proposed method is only
based on the function optimisation and matrix inversion.

RESULTS AND DISCUSSION

This study examines the quantitative performance
and the implementation of the studied and proposed
method.

Error measurement: In order to quantify the accuracy of
the estimated range flow, the following errors measures
are used. Let the correct range flow be denoted as Ve and
the estimated flow as Ve. The first error measure describes
the relative error m the velocity magnitude (Barron et af.,
1994; Barron and Klette, 2002):

v,

e

Er:‘ = el 100[2%] (17)

[

Er measures only the difference between the estimated
and the correct velocity magnitude. So we use the
directional error as a second error measure:

}[01

This quantity gives the angle in 3D between the
correct velocity vector and the estimated vector and thus
describes how accurately the correct direction has
been recovered. For the real images sequences we can
only show the computed flow fields and discuss
qualitative properties. We address this table, to prove the
efficiency of Hom and Shunck method for white and
black sequences and for a precise confidence
measure (Barron et al., 1994; Robert and Brian, 2003;
Joachim, 2003; Thomax et al., 2004; Andre ef al., 2005,
Volker et al., 2005).

Ve Ve

(18)
‘Vc‘.|Ve|

Ed = arccos{

TImplementations and results: Tn the implementation of all
studied methods, the images of R, G and B, rand g and H
and S are obtained from the brightness function of images
sequence (R, G, B).
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Table 1: Time taken by proposed methods for computation by ¢ CPU time

Panning
Proposed method 64* 64 128*128 240X320 sequence
Using rgb 2.1250 T.0790 103. 7040 56.4220
Using HSV 2.0470 8.2660 114.7970 73.0310
Using (Min RGB) 2.9810 10.2190 144.9530 78.5780
Using (Min RGB+ 3.0620 10.6250 146.7190 83.7810

smoothing)

Fig. 3: Orniginal Image, of colour ball sequence with
240X320 size

The first order derivatives of the sequence functions
are computed by using the (1/12) (-1, 8, 0, -8, 1) kernel. We
used a 5x3 neighbourhood, where each line was a
copy of the estimation kernel mentioned above. For
the computation of temporal derivatives, a 3x3x2
spatiotemporal neighbourhood was used.

In our case, we first computed the time taken by any
proposed method addressed in Table 1, wsing Matlab
implementation on Toshiba PC Intel® pentium®,
Mprocessor 1.70 GHz and 0.99 Go of RAM. We used the
ball sequence Fig. 3 with different sizes (Toby Breckon,
2006) and Barron and Klette synthetic panning sequence
Fig. 4. The first synthetic sequence Fig. 5, contains ball
moving in the horizontal direction with 4 pixels/frame
and in the vertical direction with 3 pixels/frames, with
variable sizes, derived from the colour ball sequence
{(Toby Brecken, 2006) Fig. 3. We have constructed tlus
sequence to use it in the testing phase of the proposed
methods. The second one, is generated by Barron and
Klette Fig. 4 where the correct flow is known. For panning,
they simply translated an image of the Tamaki campus
computer sclence building to the left by 3 pixels to make
each new frame. The real image sequence was at Point
Englan-d on the Tamali river in Auckland (Baron and
Klette, 2002; Bolker ef ai., 2005).

Figure 6-9 illustrate the results of the first proposed
method using, respectively the normalized space colour
rgh and the HSV space colour. Figure 10-16 illustrate the
results of the proposed method using RGB colour space
with or without smoothness performance term. and the
Fig. 17 illustrate our proper validation of Horn-Schunck
method using the Y component of space colour with
specific parameters.
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Table 2: Comparison between the results using synthetic colour ball
sequence with &4=64 size

Method AME: Er+8td (Er) %% AAFE: Ed+Std (Ed) %
Using rgb space RGB 550244 3.15+1.39
Using HSV space RGB 22242545 11.6+12.14
Min. RGB space RGB 10.4£11.41 5.83+6.13
Min. RGB space RGB 6.16+4.11 3.52+2.33

with smoothing term

Table 3: Comparison between the results from the literature using yosemite

sequence
Method AME (Er) % AAE (Ed)%  Density (%)
HS (original) 3243 30.28 100
HS (original) |71|>=5.0 2541 28.14 59.6
HS (modified) 11.26 16.41 100
HS (modified) |VI|> = 5.0 5.48 10.41 32.9

Table4: Comparison between the results Fig. 7, 9, 12-15 and 17 using
gynthetic panning sequence
AME: Er£Std (Br) %

Method AAFE: Ed+8td (Ed) %o

Horn-8 chunck RGB 17.44+17.77 2.64+4.08
Goland-Bruckstein RGB 11.38+17.36 5.04+11.80
Baron-Klette RGB 16.14+17.57 0.16

Using rgb space RGB 3.04+0.72 1.744+0.40
Using HSV space RGB 9.66+19.14 5.04+8.63
Min. RGB space RGB 6.06+6.96 3.43+£3.79
Min. RGB space RGB 3.5242.04 2.01+1.16

with smoothing term

Fig. 17: Hom-schunck flow for the Y component
(Y = 0.299R+0.578+0.114B) with ¢ = 3and 100
iterations

In the second stage, we used the first synthetic
colour sequence (Ball sequence with 64x64 size Fig. 5) to
compare quantitatively the obtained results Fig. 6 to &,
using the Average Magmtude Error (AME) and the
Average Angular Error (AAE) for each studied method
results, reported m Table 2.

In the last stage, we used the synthetic pamung
sequence Fig. 4 to compare quantitatively the obtained
results Fig. 10 to 17, using (AME) and (AAFE) mentioned
above Table 3. In Table 4, we added from the fourth line
our results to the presented in (Baron and Klette, 2002;
Valicer et al., 2005).
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CONCLUSION

Colour optical flow computed via the three colour
components seems better than Gray value optical flow.
The normalized rgh colour space method gives good
results Fig. 6 and 7 followed by the RGB space with
smoothing term method Fig. 8, 16 and 17, after that we
found the RGB space without smoothing term method
Fig. 10, 14 and fmally the HSV space method Fig. 6 and 14.
In our case we used a 100% density of dense optical flow
computation.

The proposed and studied methods using any colour
space require the presence of significant gradients of the
colour functions. If the gradient magmtude of these
functions 1s too small (=0), these methods would fail to
give reliable results. This implies that all methods based
an gradient computation, are not reliable when the scene
containsg objects with uniform colour. Gradient based
methods are simple and highly speed in implementation.
So we can use them for detecting foreground objects 1n
the sequence by using the flow optic magnitude
constraint.

We can also use the same iterative solution to Horn
and Schunck for each colour component. So, iterative
solution will take enough time and can’t resolve the
problem! We can also extend the smoothness function
with other forms (as the combination of the local and
global constraints) and we can use a bidirectional
multigrid methods for variational optical flow computation
to resolve the real-time computation problem and the
solving of the linear system of equations that result from
a discretisation of the Euler-Lagrange equations. We plan
to investigate all these to find a robust and sufficiently
method for optical flow computation for any given
sequences 1n some specific applications.
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