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Abstract: The study deals with dynamic analysis of non-prestressed Rayleigh beam carrying an added mass
and traversed by uniform partially distributed moving loads. The governing partial differential equations were
analysed to determine the dynamical behaviour of the system under consideration. It 1s shown that the
amplitude deflection decreases as the length of the load (£) increases for a fixed value of the moving load (M)
when a non-prestressed moving force problem Wr (x, t) 1s considered. Also we observed that for the moving
mass problem, the amplitude deflection W, (x, t) decreases as the length of the load (£) increases for various

time t and a particular value of the moving load.
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INTRODUCTION

This study investigates the problem of elastic
structures (beams) subjected to moving loads. Such
problems have received a greatly increased emphasis
since the middle of the last century, when railway
construction began. Useful insight into the dynamic
behavior of bridges may be obtamned by studying the
response of beams under moving loads. The problem of
oscillation of bridges under traveling loads has also
interested many Engineers, Mathematician and Physicists
and continues to motivates many investigations
(Cifuentes, 1989, Cifuentes and Lalapet, 1992; Esmailzadeh
and gorashi, 1992, 1995; Gbadeyan and Oni, 1992, 1995;
Kalker, 1996, Lee, 1994, Lin, 1996).

Willis (1951) was the first to consider the problem of
elastic beam under the action of moving loads. He made
the assumption that the mass of the beam 1s smaller than
that of the load. He obtained an approximate solution to
the problem. Stokes (1849) approached the problem under
similar assumption. The other extreme case was studied
by Krylov (1995) in which he considered the problem for
which the mass of the load is assumed to be smaller than
that of the beam. The techmque he used mvolved the
expansion of the associated eigenvalues.

Timoshenko (1992) used energy method to obtain
solution in series form for simply supported finite beams
on elastic foundation subjected to time dependent point
loads moving with uniform velocity across the beam.

Gbadeyan and Oni (1995) developed a theory
concermng the dynamic response of finite Rayleigh beam
(and rectangular plates) under an arbitrary number of
moving concentrated masses. A method capable of
solving this problem for all classical end conditions.
{clamped, sumply supported free and sliding conditions)
was developed.

The moving load problem mvolving both the nertia
effect as well as the force effects were not considered for
several years. This type of dynamical problem was first
considered by Saller (1991), later by Jeffcott whose
iterative method become divergent in some cases.

In all the aforementioned discussion, load was
idealized by a single mass poimnt. It goes without sayng
that in reality point load does not exist. Recently work
nvolving non-pomt moving loads that 1s due to
Emailzadeh et ol (1992, 1995). Tt should be remarked at
the juncture, that the mowving load problems in all
these previous studies have been for classical/ideal
end conditions.

The main thrust of the study is to

+  Develop a theory for the dynamic response of a finite
Rayleigh beam which carries a lumped mass at one of
its ends, to a distributed moving load.

»  Present the analysis of the dynamic response of a
finite Rayleigh beam which carries a lumped mass
at the end x = L but arbitrarily supported at the end
x = 0 to a uniform partially distributed moving load.
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Present a very simple and practical analytical-
numerical techmque for determimng the response of
beams with non-classical boundary conditions.

MATHEMATICAL MODEL

We consider the case of a partially distributed load
M which assumed to strike a finite Rayleigh beam of
length L, initially at time t = 0 and advancing uniformly
along the beam with a constant velocity, V. The beam
assumed to be simply supported at the left hand end of
the beam (Fig. 1) while the beam has an attached mass at
the ctherendx = L.

The governing equation of the model: The general
equation governing the dynamic behavior of an elastic
finite Rayleigh beam for the uniform partially distributed
moving load 1s given by the following fourth order partial
differential equation.

(1)

ER'W mo*w mbotw
+ — =Fx.0
at et et
Where, E is the modulus of elasticity, T is the second
moment of area of the beamn’s cross-section, m 1s the mass
per unit length of the beam, W is the deflection of the
beam, x 1s the spatial coordmnate, t 1s the time, b 13 the
radius of gyration and F (x, t) is the applied surface
moving load.
The applied surface moving load F (x, t) defined as

F (x,t)iel[fMLg 7MLVWJ

(2)
[Hix —&+c/2)-Hix-E-¢c /2)|
2 1242
_9 + 2vo” voo (3)
o2 oxot  ox®
H being the Heaviside unit function and 1s defined as
1 x>0
Where
M, = The constant mass of the load which is assumed
to be constant with the beam during the course of
the motion.
€ = The length of the load
g = Acceleration due to gravity
E = (Vt+e/2)apaticular distance along the length of

the beam

446

v M,
- W ——— [
g AN 21621 .
£
L

L

Fig. 1: The beam is assumed to be simply supported at
the left hand end of the beam

Hence the govermng equation of the model therefore
becomes

EI9*W ma*W mb2o*w
+ —
ax* at? axot?
a*w

atZ

viiw | )

2
Vo'W, :
ox

oot
[HX-E+8/2)-HX-E-c/2}]

= My, ~My, —2Mp L

The first term n the first square bracket on ther. h. s
of Eq. 5 describes the constant gravitational force, while
the second term accounts for the effect of acceleration in
the direction of the transverse deflection W (x.t), the third
term 1s for the complementary acceleration and the fourth
term for the centripetal acceleration. The second square
bracket describes the Hesviside unit fimetion.

The bounddary condition: Equation 5 1s subject to the
following end supports;
Atthe end x = 0, one of the following holds.

W(x,t):M:O atx=0or x=L
ox
9 wix, t
W(x,t)z%zo atx=0or x=L
X

53 2 (&)
wixt) = w1 =0atx=0or x=L

ax’ ax*
3
awlxt) :a w0 =0atx=0or x=L
ox o

These conditions are sometimes called classical
boundary conditions.

For the attached mass at the other end (x =1.), we have

2
EILU;’D—OJZ TW(L.t)=0
ox (7)
3
pr LD 2 =0
ax?
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(These conditions are called non-classical boundary conditions).
Where I is the mass moment of inertia at the end of the beam, w® is the circular frequency and M, is the attached mass

atthe endx =1.
The relevant mmtial conditions are

W(x,0)= %:0 (8)

OPERATION TRANSFORMATION OF THE GOVERNING EQUATION

We assume a solution of the form of the following series

W)=Y 00 (0% 09 ©)

i=1

Where ¢.(x)’s are the unknown function of time
Xi(x)’s are the known eigen function of free vibration of the beam.

Substituting Eq. 9 into Eq. 5 we have

ELY o (XY (0 m ) (0300 - mb® ) (0% ()

i=1 i=1 i=1
1 b o bt -* bl (1 0)
=2 Mug =My, 00X 00 2VMy, 3 G{UX 00 ML V? Y 00 ()
i=1 i=1 =l
[H(X -E+e)+ Hx —E+€)]
We further assume that the load function can be expressed as
Fx, D=3 W (0%() Y

i=1

Where 1j; (t) are unknown function of time and X (x) are as said earlier.
Multiplying both sides of the right hand side of Eq. 10 by X(x) and taking the definite integrals of both sides
along the length 1. of the beam with respect to X, we have

L b *e L
%J‘XJ(X){H(X 7&.+ %) 7H(X 7E_. EE:|d)< 7% Z¢1(t)IXJ(X)X1(X)|:H(XF;JFEE)H)XF;%)}
0 i-1 5
oM v e B ] i e
) | — " 12
" }4 Z'q)i(t)!xj(x)xi (X){H(X_&E)_H)X‘@‘?}dx }% ;¢i(t)!Xi X (12

S

oo L
{H(x—éf)—H(x—a—%ﬂdx }Zl‘,wmt)jxj'(x)xi(x)dx
i= 0
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Evaluating the improper integrals in the 1 h s of the Hqg. 12 term by term by integration by parts.
We finally obtained

2, < ee <2 X" QX0+ 250X
MLg{Xi(C)TLMXi(C)}ML(t)gq)i{Xi(C)Xj(C)jL24|:+Xi(C)X”j(C) }
é X"OXG0+ 22X (0 X5(0) }
24| + X0

{X“GCXJ-(CH2X"3<C)Xg(§)} }
=Wi()

~2M, qui(t){xi OO+ (13)

i=1

- 2
M, V2 2 : VX0 e
e i1 ; (t){XI(QX AT +X"E1X"(0)

A detailed analysis of the present problem, with the derivation of the Eq. 13 is given in the appendix.
Note (1) Inther. h. s of Eq. 12, we have made use of the orthonormal principle
(2)On noting that Eq. 11 is the applied force F (x, t), Eq. 10 now becomes

B 0 (0% 6orm 30 (000 -mb? 5 (0% 0= Y X
i=1 i=1 i=1 i=1

2 O ee 2
{{Xi(cw %X“i@} My, Y 6 (D[ <C)Xj(c>+i—4[><"i(c>xj<©+ XX+ X (X0 ]
i=1 (14)

Y 2
MV 0 (DX (@Xj(c)%[xmi(@xj Q)+ 2X5OX GO+ XX 1]

i=1

. .
MV 0 O QXG0+ XX (012X OXO + XX ] }—wi ©

i=1
The equation of free-vibration of beam 1s given as
XN 60 B X () =0 (15)

Where

B — me’ (16)

X () <f = DX (0 (17)

By putting Eq. 17 into Eq. 14, we have
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i=1

. .
MLVE Y 0 (O QXG0+ | XX+ 2X QX0+ X QX T

i=1

Equation 18 is a set of coupled ordinary linear second order differential equations.
Remark: By considering Eq. 18, two mteresting special cases of the problem may be analysed as follows:

* As € tends to zero, then the model would revert to the problem of a single point mass traveling on a suspension
bridge which has been fully treated and analysed by some scholars (Esmailzadeh, 1992; Gbadeyan and Oni, 1992;
Teffcott).

» If the inertia effect of the load is ignored then Eq. 18 becomes uncoupled. This can then be verified by replacing
Mg by P and M, (not involving g) by zero in equation 18. Then it can be concluded that we are having moving force
solution in a special case of the more general form of the moving mass one.

Simply supported rayleich beam with an attached mass: The dynamic response of the system under consideration
(a beam carrying amass at the end x = L and traversed by partially distributed moving load) having a simply
supported boundary conditions is considered. (In particular the beam under consideration is simply supported at
x = 0 while carrying a mass at the end x = L).

The end conditions are as prescribed in Eq. 7 and corresponding lkernel can be easily shown as

X (x)= sin%er B SiI]h%X (19)

Where

B - Elq; sing; X+’ JLcos q; (20

Elq;sing; X—m° JLcosq;x
and g, 1s the roots of the associated transcendental frequency equation given as

ZGJZML sing;sinhq; 200° TLcos q; coshq;

cosq;sinh q; — sing; cosq; — 5 5

M ]
(ElYq;

sing; coshq; —cosq;sinhq; |=0
q; 4qj Sh q;

The transcendental frequency Eq. 21 is solved, using Newton Raphson’s method

The governing differential equation for vibration of the beam, for the particular case under consideration could be
obtained thus by deriving exact governing equations by employing Eq. 19 and evaluating the exact values of the
mtegral in Eq. 12. After along lengthy simplification, we finally have
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(22)

Equation 22 1s the desired exact differential equation To obtamed results given in this paper, approximate
describing the behaviour of Rayleigh beam carrying an  central difference formulas have been utilized for the
added mass at one of its ends by a distributed moving derivatives in Eq. 22 for both cases [cases T and IT]. Thus

load. for N medal shapes, Eq. 22 are transformed to a set of
The highly coupled equation is sclved numerically. N linear algebraic equations, which are to be solved for
Note. For the case of q; = ¢ we replace the expression ~ each interval of time. Regarding the degree of
involving approximations mvolved, in order to ensure the stability
and convergence of the solution, sufficiently small time
1 q € steps have been utilized.
q;—q; ~ 2L
RESULTS AND DISCUSSION

To solve Eg. 22, recourse can be made to a numerical For the purpose of discussing the results, some
method, but two cases are to be tackled numerical calculations are carried out for the two cases of

Case 1: The moving force Rayleigh beam problem: A our consideration (i.e., the moving force problem and the
moving force 18 one in which the inertia effects of the load moving mass problems, equations.

are neglected and only the force effects are retained. This In order to provide numerical solution, the work of
is done in Hq. 22 by neglecting all the three terms on the Esmailzadeh and Gorashi (1995) is followed there by
right hand side of the later except the first term in the first choosing the following values. The length of the beam in
curly bracket [Le.. by neglecting all the terms apart from  each problem was taken to be 10m, the velocity (V) of the
the first term on ther. h. s of Eq. 22 moving force or mass is such that V = 3.3 m/. The

Case T the moving mass Rayleigh beam problem: parameters 1, E g,b,h and m are assumed to take up the
is one in which both the inertia effects and the force following values 1.04 x 107*m, 2.07x10" N m™,. 9.8 m/s,
effects are retamned 1.e., the whole Eq. 22 1s the moving 0.05, 0.01 and 1.5s, while E= 0.1 m and 1.0 m were used.
mass problem. Hence we have the following tables.
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Table 1: Variation of the deflection Wr (3, t) of the non-prestressed simply
supported Rayleigh beam carrying a lumped mass at its end x =
L and traversed by a moving force. For t = 0.5s, € = 0.1m and

various values of M;.

Length of the W (x,t) for We (3, t) for W (x, t) for
BeamX(m) M; =7.04kgm™ M, =80kem! M =10kem!
1.469 1.13E-03 9.74E-04 7.82E-04
2.888 -5.11E-02 -4.46E-02 -3.57E-02
4.307 7.53E-02 6.67E-02 5.33E-02
5.726 4.7172 3.2833 3.2833
7.145 -30.5796 -26.3228 -21.1228
8.564 -215.752 -186.117 -149.5205

Table 2: Variation of the deflection W (x, t) of the non-prestressed simply
supported Rayleigh beam carrying a lumped mass at its end
x =1, and traversed by a moving force. For t =058, ¢ = 1.0 m
and various values of My

Length of the Wy (x,t) for Wi (%, t) for Wi (x, t) for
BeamX(m) M =7.04kgm™ M, =80kem*' M, =10kgm!
1.853 1.96E-04 1.72E-04 1.37E-04
3.206 -8.90E-03 -7.83E-03 -6.26E-03
4.559 1.32E-02 1.16E-02 9.32E-03
5.912 8.19E-01 7.21E-01 5.76E-01
7.265 -5.27E+00 -4,64E+00 -3.71E+00
8.6018 -3.74E+01 -3.29E+01 -2.63E+01

Table 3: Variation of the deflection Wr (3, t) of the non-prestressed simply
supported Rayleigh beam carrying a lumped mass at its end
x = L and traversed by moving force. For € = 0.1 m, M; = 7.04
kg m™! at various values of t

Length of the W (3¢,t) for Wr (¢, t) for W (3, t) for
Beam X({m) t=10.5 sec t=0.1 sec t=1.5sec
1.469 1.13E-03 3.95E-03 8.7TAE-03
2.888 -5.11E-02 -1.79E-01 -3.96E-01
4.307 7.53E-02 2.64E-01 5.84E-01
5.726 4.72E+00 1.65E+01 3.66E+00
7.145 -3.06E+01 -1.06E+02 -2.35E+02
8.564 -2.16E+02 -7.55E+02 -1.67E+03
9.983 3.91E+02 1.37E+04 3.03E+04

Table 1 shows the values of the transverse deflection
Wdx, t) of the non prestressed simply supported
Raleigh beam carrying a lumped mass at the end x =T, at
the t=10.5s, while E = 0.1, The analysis was carried out for
the various values of X. Similar results were presented in
(Table 2) but for E = 1.0 m. Uniform partially distributed
moving force was considered. Tt was observed from each
of these two tables, that the amplitude deflection
decreases as M, increases. However the amplitude
deflection decreases as E mcreases for fixed values of M.
In particular, amplitude mcreases as M, mcreases.

Furthermore, (Table 3) shows the variation of the
deflection, W, (x, t) of the system mnvolving moving force
problem, against various values of x and for different
values of time, t it was found that the amplitude
deflection increases as t increases.

Table 4 deals with variation of the lateral deflection
Wi (%, t). The moving mass problem, of a non-
prestressed Rayleigh beam traversed by a uniform
partially distributed mass against various values of
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Table 4: Variation of the deflection Wy (x, t) of the moving mass non-
prestressed simply supported Rayleigh beam traversed by a
uniform partially distributed mass against various values of x, for
different values of M, (i.e, My =7.04, 8.0and 10kgm™), t=
0.5sand e =0.1 m

Length of the Wy (3¢t) for Wi (3,t) for Wi () for
BeamX(m) M, =7.04kgm? M; =80kgm! M =10kgm!
1.469 -2.96E-06 -2.91E-05 -2.80E-05
2.888 -9.19E-05 -8.13E-05 -7.97E-05
4.307 -3.47E-05 -3.53E-05 -3.66E-05
5.726 8.45E-05 8.38E-05 8.14E-05
7.145 2.40E-05 2.51E-05 8.14E-05
8.564 -2.77E-04 -2.76E-04 -2.72E-04
9.983 -4.91E-04 -4.91E-04 -1.91E-04

Table 5: Variation of the deflection W, (x, t) of the moving mass non-
prestressed simply supported Rayleigh beam traversed by a
uniform partially distributed mass against various values of x, for
different values of M; (i.e., M; = 7.04,80and 10kgm '), t=1s
and € =0.1m

Length ofthe Wy, (¢t) for W (¢,t) for Wi (35,1) for
BeamX(m) M =704kgm™ M, =80kgm™! M; =10kgm™
1.469 -5.71E-05 -5.74E-05 -5.54E-05
2.888 -1.52E-04 -1.52E-04 -1.50E-04
4.307 -5.83E-05 -5.89E-05 -6.02E-05
5.726 1.60E-04 1.58E-04 1.56E-04
7.145 3.78E-04 3.86E-05 4.02E-05
8.564 -5.11E-04 -5.09E-04 -5.05E-04
9.983 -8.81E-04 -8.81E-04 -8.81E-04
Table 6: Variation of the displacement Wy (x, t) of the moving mass non-

prestressed simply supported Rayleigh beam for different values of
time t against < (i.e., e =0.1 and 1 m) and M; =7.04 kg m™"

Time (t)s Wiy Cet)for e =01 m Wy Cet for e =1.0m
0.43 -2.96E-06 8.55E-05
0.86 -8.19E-05 -8.27E-05
1.29 -3.47E-05 -1.61E-04
1.72 8.45E-05 7.06E-05
2.15 2.40E-05 4.51E-06
2.58 -2 77E-04 2.26E-04
3.01 -4.90E-04 2.52E-04

coordinate x, three different values of the moving load
M, (ie, 7.04, 8.0 and 10 kg m~" were considered for time
t=035sand e =0.1 m.

Table 5 containg similar values of Wy, (x, t) but for
t = 1.0s. Furthermore values of Wy, (x, t) similar to those
in (Table 4) are presented in (Table 5). Table 6 shows the
variation of the displacement Wy, (x, t) for different values
of £ (¢ =01 mand | m)against t. (Table 4-6) shows that
the amplitude deflection decreases as M, increases for
fixed values of t and €.

CONCLUSION

We have examined dynamic analysis of non-
prestressed Rayleigh beam carrying an added mass and
traversed by uniform partially distributed moving mass.
We have modeled the problem mathematically in such a
way that the mass of the moving load is small compared



J. Eng. Applied Sci., 2 (2): 445-455, 2007

with the mass of the beam. The material of the beam is ¢ The amplitude deflection of non-prestressed moving
linearly elastic and homogenuous at any cross section. force problem decreases as the value of the moving
The beam is finite, initially straight and uniform cross load M, increases for a particular time t.
section area. »  The amplitude, deflection of the non-prestressed
It 1s further assumed that the beam carries the whole moving force problem increases as tiume t increases
load at the left hand support initially. The load moves at for various values of X.
constant velocity from left to right and keeps contact with ~ »  The amplitude deflection W, (x, t) decreases as €
the beam at all times. increases for various time, t and a particular value of
Some of the interesting, conclusions of the problem the moving load when a non-prestressed moving
are as summarized as follows: mass problem is considered.
¢+ The amplitude deflection decreases as the length of ACKNOWLEDGMENT
the load (€) increases for a fixed value of the moving
load (M;) when a non-prestressed moving force The authors gratefully acknowledge the valuable
problem is considered. suggestions of the reviewers.
APPENDIX

In order to derive Eq. 13 the function F (x, t) 1s assumed to be expressible as

F(x.t) :iwi(t)me) (AD)

i=1

Where the P,(1)s are unknown functions of time. By substituting for W (x, t) from Eq. 9, multiplying both sides of the
r.hs. of Eq. 10 by X(x) and taking the definite integral of both sides along the length of the beam with respect to X we
obtain Eq. 12.

L
M = S
- [xi00] Hix-g+5) - nix-E-5)|
0

co L
M
dx—?L ;¢i(t)’!Xj(X)Xj(X)|:H(X_§+EE)_H(X_é_%):|dx }

[ s L
L 2¢i(t)ij(x)xj<x>{H<xaf)H(xa%)}dx } (A2)
L=t 0

MV Em(t)fxi"(x)Xj(x){H(xaf)H(xa%)}dx }

S

L i=1 0

- L
= Ewi(t)IXj(X)Xi(X)dX

i=1 0

The above integrations can be convienently carried out term by term by defining them as follows:
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M L
K —— L8 J'Xj(x){H(x —t+ Sy Hx —a—idx
S 2 2
0

oo L
M = €
L= ;[iz;q)i(t)-!'xj(x)xj(x){lq(x —E+ ) -H(x —@—}dx }

2
r o L
szzr\;liLv Zq)i(t)-"xj(x)xj(x){H(x—§+€E)—H(x—é—idx } (A3)
| i=l 0
B PN = :
N:TL 2¢l(t)-|.Xlwf(X)XJ(X)|:H(X&,‘FE)H(XE_.E}CIX j|
7i:1 0

oo L
0= Y w0 ;008 (xax

i=1 0

Consider the first term that is K, using integration by parts,

L

L
M
K——;g{ { [H(X—§+§)—H(x—@—E}J.Xj(x)dx -
0 0

(Ad)
LI L
J.{J.Xj(x)dx{H'(xénL%)H'(x&%} } }

0L0

Using the property of Heaviside function and the figure below:

- |

.

Eten

F 3

I >

L L L L
K = %j jxj(x)a(x iy %)dx ,J‘ ij(x)S(x 7§f§)dx
00 0 0

(A5)
L
Now setting D(x) = IXj(X)dX equation K becomes;
0
ool L
_ g ey Shax e & (A6)
K . ‘!‘D(X)S(X E+ 2)dx !D(X)S(X & 2)dx
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Thus by the property of Dirac delta function, we have

K= 18 {D(& +5)-DE+ 5)} (A7)
= 2 2

L L
g = Mg {[Xj(é n E)d@ _ .[Xj (& - E)dgl (AB)
c 2 2
0 0
Using Taylor’s series expansior, we obtain

2 3 4
L E} X'E) ﬁ X(E) ﬁ XY(E)
Mg _ [ (2 2 2
K =- EL [![XJ(@ [2]}(' &+ +

E 1
5 3 + m +...—Xj(§)+{2J (e -

eV ey eV (49)
xo [S]ro [5]xo
+ - o Jdx
21 al A1
Hence
2
K=-M;g {Xi(C) + i—le”i(C)} +0(e%) (A10)
Following similar argument, the second improper integral
bk *e L
- . cEar S Sy wr _Syxe LS (A1)
L wéw{ {X,<a+2>xj(a+2) i - X 2>}dx
Which reduces to
kil . 2
L=-M (t)E%{Xi(C)Xj(cw62—4[X"i<c>xj(c>+2X'i(c>x'j(c>+Xi(c>x"j(c>] (Al2)
i=1
Also the third and the fourth improper integrals M and N becomes
s . L
- . e Sy e LSy s _ Sy e LS (Al13)
M QMLV;%(U}[ {Xl(i+2)XJ(§+2) X'E 2)XJ(§ 2)}1?4
o L
N VIRTEA WY ME = EVXE + D)= X(E — X (E -2 Al4
N=-MvEY g {X &+ DIXE+ D) XV E- DX (6 2)}& (AL

i=1 0
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Respectively which finally reduces to
o, _ e, . _ . ;
M= -2M; VY o0 X QX0 + 1 XO%;0 + 2% OXH0+ X OX]' @) } 0% (A15)

i=1
And

AN " e’ riv " ' " " 3 (A16)
N=-MpVEY 0] XOX 0+ XN+ 2XOX 0+ XX Q)| +0E)

i=1

Respectively.
By using orthogonality relation

e L
O:E\pi(t)_[x LGOX; (x)dx decomes (1) (A17)
i=1 0
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