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Abstract: Strong asymptotic is given for a sequence of extremal polynomials with respect to a Szegd measure
supported on a system of a rectifiable Jordan curves and arcs and perturbed by an mfmnite Blaschke sequence

of point masses.
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INTRODUCTION

Hereafter in this study, let o be a finite positive Borel
measure with an infinite compact support in the complex
plane. Denote by {T,(2)} the monic polynomial of degree
n orthogonal with respect to the measure o 1.e.

T(z)=2"+.,

—k
[T.@zda=0, k=01.n-1

Let P, be the set of polynomials of degree n. It 1s well
known that T,(z) satisfies the extremal properties:

z" +QH2 =m_ (o) (1.1)

T, (2., = min i

QeFyy

where as usual

Ifl,..., = {[lf@f do@)]

One of the major areas of research m the study of
extremal polynomials 1s to investigate the strong
asymptotics behavior of T,(z) as n-e. Other commonly
used names are power asymptotic, Szegd asymptotic, or
full exterior asymptotic.

In the classical case of a real interval and unit circle
the strong asymptotics was investigated by Bemstein
and Szegd (1975). In Widom (1969), we find some general
results concerning the strong asymptotics for orthogonal
polynomials with respect to measure supported by a fimte
system of arcs and curves and which satisfy Szegd
condition. An extension of Widom’s results has been
given by Kaliaguine and Konorova (2000) for a measure
concentrated on a system of arcs and curves and
perturbed by a finite Blaschke sequence of point masses.

For more details on this subject see (Khaldi, 2004; 2005;
2004, L1 and Pan, 1994; Marcellan and Marom, 1992,
Nuttal and Singh, 1977; Peherstorfer and Yuditskii, 2001;
Rakhmanov, 1977, Ralkhmanov, 1983; Rudin, 1968; Szegd,
1975, Widom, 1969).

In the present study we study the strong asymptotics
of orthogonal polynomials associated to a measure of

the type
o=0o+Yy

where ¢ denotes the absolutely continuous part of the
measure 6 onn E 1e.,

do(£) = p(E)dz, p=0pe L (E,|dE]) (1.2)

and v is a point measure supported on a denumerable set
of points {71 off the system i.e.,
k=1

Y=Y A8, A >0YA <= (1.3)
k=1 k=l

Note that the study of the case where the pomt
measure is supported by an infinite discrete part
(Kahldi, 2004, 2005; Peherstorfer and yudistshii, 2001),
is completely different from the finite one (Gonchar,
1975, Kaliaguine, 1995; Kaliaguine and Konorova,
2000; Li and Pan, 1994), so we try to bring over some of
the foremost ideas of (Kaliaguine and Konorova, 2000)
to the infinite case, where the situation turns out to be
much more difficult, for this reason, ne much 1s known
about extremal polynomials on a system of curves
although they plays an important role in
modermn solid state physics see (Gasper and Cyrot,
1973; Heine, 1980), since the densities of states live on
several arcs.

and arcs,
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This study is organized as follow, we give some
preliminaries and notations to be able to state our results,
we recall the definition of the complex Green function,
describe the Hardy multi-valued functions. We expose the
extremal problems. The mam results are proved.

Premilinaries and notations: Let | — LmJEk be a union of
k=1
complex rectifiable Jordan curves and arcs of class C*
withg ﬂE =g ¥i#j- By E' we denote the union of
1 1 2

curves and E® the union of arcs. Dencte by Q the
connected component of C\E and we suppose that «€Q.

Complex green function: Let g(z,a) be the real Green
function of { with singularity at a, denote by g(za) it’s
harmonic comugate, then the function G(za) = g(za}+
18(z.a) 15 called complex Green function for £ with the pole
at a. If a=8 we denote by g(z) and G(z) the real and
complex Green function with singularity at mfimty. The
function ®(z) = exp[G(z)] is locally analytic in £, has no
zero with a pole at infinity and |®(E)| = 1, £e2€). The
logarithmic capacity of B denoted by C(E) is the
positive number C(E) = exp(-y), where v is the Robin’s
constant of €

v =lim[ g(z)-log|]

If the weight function p (which defines the absolutely
part of the measure o satisfies the Szegd condition:

[ togtpEn|@ (&) |dg] >

then, there exists the real function h harmenic 1n Q with

the boundary condition on E: h(£) = log(p(£)), ZeE. The
function R(z) = exp{h(z)+if1(z)} 13 locally analytic n Q,
has a non-tangential limit value on E and [R(z)| = p(§), EcE.
The function pyz)= exp{(1/2)(h(z)+iﬁ(z))} 15 called
Szegd function associated with the weight function p.

The Hardy spaces of multi-valued functions H*(Q,p)
One says that a function f locally analytic in Q with single
valued modulus and multi-valued argument is from
H2(Q,p) space if the function [f{zPR(z)| has a harmonic
majorant in Q. Each function f from H*(Q,p) has limit
values a.a. on E and

s, =, [FEN PEIE] <,

here we have use the following notation

 reofag) = [, g

2

where the boundary €} of the region { is essentially the
set E where any arc of E is taken twice.

Extremal problems: We define p(x) as the extremal value
of the following problem:

uiey =inf ]}, 08 Hi@pro(=) =1} G

It 15 proved in (Widom, 1969) that the extremal
function of the problem (3.1) 1s unique up to the complex
constant factor of modulus 1. We denote the extremal
function of the problem (3.1) by ¢.

Lemma 3.1: The extremal function of the following
problem

u(o) =inf{plls - 08 HE2PLO(=)=1

cp(zk):o,kzl,z,...}

(3.2)

is given by y = @B, in addition
. = H
w (@) =] ®(z)
=1
where the constant u(e) and the function ¢. are defined

by the problem (3.1) and the function B is the product:

122
B#) _gqb(z,zk)

Proof: The proof is the same as given in (Khaldi, 2004).
Remark 3.1: Tn the case when Q is simply connected that
1s E1s a curve or an arc (m = 1) the function B 1s

= D(z)-0(z,) [P(%]]
b (7,)0(7,) -1 P(z)

B{z) =

Statement of the main results

Definition 4.1: A measure o = ¢+ is said to belong toa
class A, if the absolutely continuous part ¢ and the
discrete part y satisfy the conditions (1.2), (1.3) and the
Blaschke's condition, 1.e.,

N(D(z,) 1)< (4.1)
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Remark 4.2: The condition (4.1) is natural and it
guarantees the convergence of the Blaschke product

[Te(z)

k=1

Definition 4.3: A rectifiable curve or an arc E is said to be
of class C*' if in the canonical parameterization z(t) of E,
the second derivative of the function z(s) satisfies a
Lipschitz condition with some positive exponent.

We denote as in (1.1) by mn{o) and mn(oy) the
extremal values of the following problems:

m, ()= [ |T.EF p@®ldz+ 3 AT, z)f
k=1

m,(o,)=] Tz,

T p@dz + YA,
k=1

o
where the measure Gy =0+ EARSZk .
o
It is easy to see that the extremal property of T,"(z)
(see (7)) implies that the sequences {m (5)}“’ is
n k=1

mereasing and m (0 ,)<m.(0) for every N = 1 and so the
following theorem tells us what the limit 1s.

Theorem 4.4: Assume that the measure 5_ o iAkE’
k=1

satisfies the conditions (1.2) and (1.3), then we have

lim m, (G,,) = m,(G)
H—pee

Proof: According to the reproducing property of the
kernel polynomial K (£,7), we have:

Tz = [ TN EK, . E 2 pE)]ag

using the Schwarz inequality we get

INGIIGTE

K&z

T (zj)\2 <[

K, (& z) p)d
(4.2)

S mn (GN )Sup
t=E
From (4.2 and the extremal property of T (z) it yields

m, (@ <m, o0+ Y AT )

k=HN+

374

Z,EAK

k=N+1

|

m (o)< lirlninf m, (o,)<limsupm (5,)<m (G)
—hee I—pen

= mn(GN){l + sup ‘Knﬂ(a:Z])
EeE k=N +1

Finally, we obtain

This achieves the proof of the theorem.

Theorem 4.5: Let E be a system of curves and arcs from
the class C* and the measure o from the class A. If

m, () <{ﬁ®(zk)jmn(a),‘v’n,VN (4.3)

then the orthogonal polynomials T.(z) and the extremal
value m,(0.) have the following asymptotic behavior

(n—oo):

(i) w0y (o)
[cE)]

) im [ 2Oy ol =0
:|[CE)]

() T(n=[CED] ¥z +e,(2).

€,~0 uniformly on the compact subsets of (2.
The constant p(o) and the function 1 are defined in
Lemma 3.1.and

W)=l if Le E
W(E) = DU, E)+ D (Ey (&) if Ec B

Proof: We start with the proof of the upper bound of

m, (o)

) (4.4)
[C(E)]

limsup
n—pes

Indeed, taking the limit when N tends to infinity in (4.3)
and using Theorem 4.4, we obtain

{ftet

On the other hand it 1s proved m (Widom, 1969) that

m, (5)

[cE)]™

m, ()

[cE)]™

ﬁ|®(zk)| (4.5)

k=1

m, () _

lim (4.6)

uiee).
~e[eE)
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Using (4.5), (4.6) and Lemma 3.1, we get

limsup m, (6)

s [C(E)]Zn

<[f[c1><zk)| }u(a)—u(o), @7
k=1

Now consider the integral

L =[S v

. (&)|dg
cE)] PO

and transform 1t in a standard way as the following sum

e |
A e s [CE)f
—2Rej."7§)n

: [C(E)]

=L +12+L0

p&)[dE[++[| ¥ @) p&y|d]

W(Ep(E)|de|

First step: From the defimtion of m, (o) we have

T, %
L= (é) az (4.8)
/ dll . [cE )]
Second step: Evaluation of the integral 1% .
For the curves we get
[ @l p@lde| =, ) pldg  (49)

For the arcs we obtain

[l ez = §_ wE) példg]
+2Re [ D@, (E)O7 En_(Ep(E)|dE]|

since the second integral approaches zero as n-e, from
Widom’s lemma 1t yields

[[wEy p®)]d|=u (0)+B,. B, >0  (410)

So, (4.9) and (4.10) implies

[[weEy p@|d = (o) +B,. B, >0 (A1)

Third step: Since a _ 1 wehave
D

n

2Re [ pEpe oz -

= [C(E)]

W(Ep(E)|dE| =

Re(j.)EiT ©)

[CEYDE]

then by proceeding as in (Peherestorfer and Yudistskii,
2001) we get

II =2u(c)+B,, (4.12)

B,—0
Using (4.8), (4.11) and (4.12) we obtamn

0<I < [;“(E(;z F e+ o, —2u(@) B, (4.13)

this implies

liminf -2t
n—yes [C(E)]

> ufo). (4.14)

The mequalities (4.7) and (4.14) prove (1) of the
Theorem.

On the other hand, we get (11) of the theorem by
passing to the limit when n tends to infinity in (4.13) and
taking into account (i) of Theorem.

The proof of (iii) of the Theorem is the same as given
in (Kaliagruine and Konorova, 2000). This achieves the
proof of the Theorem.
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