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Abstract: The multi-scale method is adopted in damage analysis of plain woven composites. The microscopic

Repeated Umit Cell (RUC) model for yamn was studied firstly with appropriate failure criteria, thus elastic and

strength properties were obtained. Then these results were applied to failure

i the

research

mesoscopic-repeated unit cell model for woven composite. The predicted results by the present method are

compared with the experimental data and good correlation 1s observed.
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INTRODUCTION

Woven fabric 1s constituted with two vertical yarns
and has advantages of better stability, impact resistance
and low fabrication cost as compared with unidirectional
fiber remforced composites. Therefore, woven composites
have been widely used as primary structural constituents
1n aerospace, automobile, marine and defense mndustries.

For effective use and design of woven composites,
one should understand their mechanical behavior clearly.
The complex architecture of the woven composites,
however, makes the analysis of their mechanical behavior
very difficult. In past decades, tremendous amount of
works dedicated to predicting the elastic properties of
the materials with the repeated umit cell approach.
Ishikawa and Chou (1982) (Naik and Shembekar, 1992)
developed one-dimensional and two-dimensional models
and obtamed the elastic properties based on the classical
lamination theory. Recently, with rapidly growing
computational capability, three-dimensional models
have been used to predict the overall properties
(Tan et al., 1998; Barbero et al., 2006). Further more, textile
composites have a feature of an mherent structural
hierarchy in various length scales, ie., a) the fiber
diameter s cale; b) the vyam-diameter scale; c) the
meso-repeated unit cell scale; and d) the macro-structural
component scale. Swan and Kim (2002) (Wang ef al.,
2005) studied the elastic behavior of woven composite
step by step based on the multi-scale analysis.

The works mentioned above were all contributed to
the elastic constants. As is well known, it is very
umportant to make clear of strength properties of woven

composites. For damage analyses of composites
(Zako et al., 2003; Zeng et al., 2004), there are two major
1ssues, failure criterion and post-failure stiffness
reduction. Among these analyses, generally speaking,
yarmns are considered as transversely isotropic material
and the Maximum stress criterion (Zako et al., 2003;
Tabeie and Tvanov, 2004), Hoffman criterion, Tsai-Hill
criterion and Tsai-Wu tensor criterion (Bahei et af., 2004,
Zeng et al., 2004) can be directly used. As to the isotopic
matrix material, the Maximum principal stress criterion
(Tabeie and Ivarov, 2004) or von Mises criterion
(Bahei et al, 2004; Zeng et al, 2004) are adopted for
predicting its failure. There are commonly two methods
for post-failure stiffness reduction, the in directions and
The non-directions stiffness reduction
assumes that the post-damage stiffness matrix is reduced

non-directions.

to a near-zero value in all directions. This approach is
often applied with the Hoffman criterion, Tsai-Hill
criterion, Tsai-Wu tensor criterion and von Mises
criterion which could not specified the failure direction.
The in directions stiffness reduction only reduces the
stiffness in the material’s failure orientation and applied
associated with the failure criterion which can specify the
material’s failure direction, such as the Maximum stress
criterion. In the previous works done on woven
composites, parts of them reduced the post-failure
stiffness of yarns in directions (Zako ef af., 2003; Tabeie
and Ivarov, 2004), but none of them considered the
stiffness reduction of matrix in this way.

There 1s still an obstacle on failure analysis of the
woven composites that is the elastic and strength
properties of the impregnated yarms. A lot of theoretical
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equations were built to predict the elastic constants of
the umidirectional composites in the past decades such as
the mixture rules and the Halpin-Tsai equations. But they
all make use of the modification parameters which 1s
determined by certain experiment to obtain the correct
value. The modification parameters depend on geometrical
and constitution which strictly limit the application of
these equations. As to the strength properties, there is
seldom equations can predict it correctly.

In this study, the multi-scale method was extended to
the failure analyses of woven composites. Based on the
properties of two basic constituents of the composite,
fiber and matrix, the yarn properties, elastic constants and
strengths, are first obtained through FE analysis on the
micro-RUC model with certain failure criterion. This
method can provide exact results without the costly
experiments and can be used to any material and any fiber
volume fracton. Next, the tensile properties of the
composite are obtaned through analysis of a meso-RUC
model. The nonlinear response of the yams is considered
m this analysis. The stiffness reduction of matrix is
considered in particular orientations in the micro- and
meso-scale RUCs. The element disappear techmque which
is commonly used in previous researches is abandoned.
The predicted results by the current method are compared
with the experimental data of the plain woven composites
and they are in good agreement.

Mutli-scale RUC: As explained in the section of
mtroduction, two types of the RUC models developed.

Micro-RUC model of yarns: Yarns are considered as
unidirectional fiber reinforced composite which 1s
idealized as periodic array of fibers in the matrix with fiber
volume fraction equal to the packing density. A great deal
of mechanical models, such as rectangular cross section
model, column model and hexagonal model, has been
studied. Among them, the hexagonal model 15 widely
quoted for modeling transversely isotropic material. Since
the periodical boundary conditions cannot be used easily
in the hexagonal model, a rectangular micro-RUC model
contaiming the hexagonal model is adopted herein as
shown in Fig. 1. Thus, the periodical boundary conditions
can be easily applied to finite element analysis.

Meso-RUC of plain woven composite: The plain-woven
composites, contaiming a single warp and weft layer,
possess a periodic microstructure only in the plane of the
woven layer. However, structural components that utilize
plain-woven composites are fabricated as laminates from
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Fig. 1: Fiber distribution pattern: (a) fiber distribution; (b)
micro-mechanical model of yarns

Fig. 2: Plane woven lammate structure

L WA

—— aig

44— v ——|n

Fig. 3: The center path of warp yarn

several plies as illustrated in (Fig. 2). The meso-geometry
has a configuration with periodical mn three orthogonal
directions in this study. The rectangle area shown in
(Fig. 2) 1s selected to be the meso-RUC by neglecting
the effect of surface cells.

The microstructure of the cell can be determined by
textile parameters: a, the width of warp yarns; a; the
width of weft yams; g, the gap between two warp
varns;, gs; the gap between two well yams; u, the
curve distances of warp yarmns; u,, the curve distances of
weft vams; h the thickness of one lay; and h, the
thickness of warp vam and weft yam in one layer.
The center path of warp yarn shown in (Fig. 3) can be
written as:
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Failure criteria and stiffness reduction: Two

three-dimensional heterogenecus FE models at different
scales, consist of fiber, matrix and fiber boundless, were
employed. If the stress level satisfies the failure criterion
of the material, the matrix, fiber, or tow would crack.
Final failure corresponds to the rupture of fiber in the
micro-RUC and to the break of the tow aleng the
longitudinal direction in the meso-RUC. The criteria and
stiffness reduction approach used for the three kinds of
materials are summarized below.

Failure criteria and stiffness degradation of matrix:
The matrix was treaded macroscopically an isotropic
body in the micro-RUC and the meso-RUC. The
Maximum principal stress theory 1s used for the

damage prediction, which can be expressed as
follows:
o > X5, (Za)
O <X (2b)
L (2¢)

where <t X&) and S, are the tensile, compressive and
m>

shear strengths of the material, respectively. o, and o, are
the first principal stress and the third principal stress
and T, 15 the maximum shear stress which can be
obtained form:

3)

1
Thax ~ E(GI - GIH)

If the o, exceeds the tensile strength of matrix
material, atensile crack would present in matrix. Except for
the normal and shear stresses, all remaimnng stress
components can be transferred across the crack. As is
shown m Fig. 4a, 0, 0,; and 0,,, are degraded to near
zero, subscript 1 denotes the Cartesian axis perpendicular
to the plane of the crack while 2 and 3 are in the crack
plane. The stiffness degradation of the matrix m the
crack coordinate system is
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(4,7, 4,7, d,72, © 0 0
d,7, 7 7, 0 0 0

0 0 0 dyZ; 0 0

0 0 0 0 Z; 0
| 0 0 0 0 0 dyZs|

If the maxinum shear stress is great than shear
strength of the matrix, the failure model 13 shown in
(Fig. 4b) and only 0,, can be transferred. Here, axis 1, 2, 3
the principal stress
degradation of the matrix can be expressed as:

i direction and the stiffness

[d,2Zy d,Zs, dpZ, O 0 0
d,Z, 7y dpZ, O 0 0
(] -k, dnZs dpZ, dpZy 0 0 0
0 0 0 d,Z; 0O 0
0 0 0 0 dypZs 0
e 0 0 0 dpnZ; |
(5)
InEq. 4 and 5,
1-v, U
4= 2b = >
(1+v, X1-2v,) (1+v, X1-2v,)
P U
21+vy)

and d,, is a small number representing the loss of the
stiffness in the particular directions, taken to be 0.01 for
the damaged state during numerical calculations.

The crack orientation in a RUC may vary at different
locations. It 18 convenient to have the degraded stiffness
matrix transferred to the global coordinate system with the
transformation matrix, [T], between the local and global
coordinate system (Warg et al., 2005). The post-damage
stiffness matrix in the global coordinate system is

[e1=[1]" [c]"[1] ©

If Eq. 2b is satisfied, then the element presents the
compressive The
reduction approach will be used. The stiffness is reduced
to a near-zero value wrespective of the failure direction.

failure. non-directions  stiffness

Failure criteria and stiffness degradation of fiber: There
are many kinds of fibers that present different
characteristic. For example, glass fiber and boron fiber are
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Fig. 4: Crack coordmate system: (a) tensile crack; (b)
shear crack

isotropic materials, but carbon fiber and Kevlar fiber are
transversal isotropic bodies. In this study, the Maximum
principal stress criterion as expressed in Eq. (2) is applied
to predict the failure of isotropic fibers. As to the
transversal isotropic fibers, the Maximum stress criterion
is adopted, which can be written as follows:

where Xitf,Xicf and T are the tensile, compressive and

shear strengths related to the three major material
orlentations.

In the micro-RUC of yarmns, if one of Eq. (2) or
Eq. 8 were satisfied, the fiber element would lose its
load bearing capability completely. Therefore, the non-
reduction is suitable for this

direction  stiffness

condition.

Failure criteria and stiffness degradation of yarn: For
yvams of transversal isotropic material, failure and
stiffness reduction are orientation dependent.
exarmple, the transverse failure can occur without breaking
the longitudinal fibers and do not completely lose the
stiffness of the material. Therefore, the Maximum stress
criterion is used to predict the failure of yarn, as expressed

For

in Eq. 8. The stiffness reduction scheme for post-failure
yarns in (Zhang et al., 2005) is adopted and the stiffness

o. > Xt (7&) . L . .
= E reduction factors are list in (Table 1). The failure in the
axial direction of the yarn leads to the ultimate failure of
o, <X (7b)  the composite material.
To model the degradation of the yamn matenal, the
(70) stiffness matrix is written as follows (Tabeie and
> Q.
Tjj| = Sl_]f Ivarov, 2004):
- -1
1 ez v o v 0 0 0
Ey VE daFy Y Ep d3Ep
_juz vy 1 123 0 0 0
Y By daFy daEy /d2E2d3E3
- Joia vy V23 1 0 0 0
[eg]=[sy | VE dE;  JaExsE; d3Ey (8)
0 0 0 1 0
dqGra
0 0 0 !
d5Gz3
1
0 0 0 0
L dsG12 |
Table 1: Failure criteria and degradation scheme for yarn material
Reduction coefTicients
Failure mode d, d; dy ds ds
Longitudinal tension Ultimate failure
Longitudinal compression Ultimate failure
Transverse tension, 2-direction 0.01 1.00 0.20 1.00 0.20
Transverse compression, 2-direction 0.01 1.00 0.20 1.00 0.20
Transverse tension, 3-direction 1.00 0.01 0.20 1.00 0.20
Transverse compression, 3-direction 1.00 0.01 0.20 1.00 0.20
Longitudinal shear, 12-plane 0.01 1.00 0.01 1.00 1.00
Transverse shear, 23-plane 0.01 0.01 0.01 0.01 0.01
Longitudinal shear, 31-plane 1.00 0.01 1.00 1.00 0.01
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where d, T =12, 3,
material, initially all of them equal unity.
The degraded stiffness matrix of yarn material 1s

...,6, are the reduction factors for yarn

defined m the material principal coordinate system. It
should be transferred to the global coordinate system
with the transformation matrix, [T].

RESRLTS AND DISCUSSION

Predicted material properties for yarn: The literature
(Warg et al., 2005) studied the elastic properties of yam
with same micro-RUC model based on periodical
boundary conditions. The predicted results kiss well
with data computed by equations with a suitable
parameter determined by experiment. Thus the correctness
of the model and the method built to predict the
constants of yarns are verified. As to strength properties,
Zhang et al, 2005) predicted the strength of E-
glass/epoxy unidirectional laminate under off-axis loading
by the smeared crack method and the computed results
are in good agreement with the test data performed on a
similar composite system. But it was not considered all the
strengths of the unidirectional composite integrated.

The impregnated yam constituted of E-glass and
epoxy with the fiber volume fraction of 70% (Tabeie and
Ivarov, 2005) has been studied and the matenal properties
are listin (Table 2). Finite element model of micro-RUC for
yvam is shown in (Fig. 5) with a total number of 16762
elements and 8612 nodes. Eight-node brick elements and
six-node wedge elements are adopted. The mesh in the
opposite boundary surfaces of the micro-RUC is exactly
the same for applying the periodic boundary conditions.
The dimensicn of the RUC is 5x346.4x200 and only one
layer of element 15 required i the thickness direction
(x-direction, Fig. 5).

There are six strengths of the umdirectional
composite identified as: longitudinal tension strength,
longitudinal compression strength, transverse tension
strength, transverse compression strength, longitudinal
shear strength and transverse shear strength. For each
case, the appropriate periodic boundary condition is
applied.

The described micro-mechanical material model of
woven composite materials is programmed as a UMAT in
ABAQUS commercial finite element code. The boundary
conditions are applied using the equations. Under
mcrementally applied loadings, stress analyses were first
carried out and used to identify the damage location by
appropriate failure criterion. Once damage occurs, post-
failure stiffness reduction is then applied for further stress
analyses. The analyses keep gomg on until the final
failure of the entire micro-RUC.
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Fig. 5: Finite element model of yarns

Figure 6 shows the stress-strain curves obtained
using the finite element simulation with the post failure
response. It is seen that, before reaching the failure stress,
all curves are elastic, whereas upon exceeding the failure
stress, the curves of longitudinal compression, transverse
tension and transverse compression drop dramatically.
But, the stress-strain curve of longitudinal tensile has a
transition when the stramn reaches 0.032 because of the
failure of the matrix and shows the nonlinear response, to
be taken into accounted in the analyses of the meso-RUC
model. The curves of longitudinal shear and transverse
shear undulate obviously after the imtial damage occurs.
But the maximum stresses are slight higher than the stress
where the initial damage presented. Therefore, the
strengths of longitudinal shear and transverse shear are
taken to be the stresses when imitial damage occurred.
The elastic and strength properties of the yams are listed
in (Table 3) except the longitudinal module. The elastic
property of longitudinal can be expressed as:

_ [52155GPa (g, £0.032) ©
17 151.136GPa (g >0.032)
The relationship between stress and strain of

longitudinal tension determined by Eq. 9 1s also shown
in (Fig. 6a). Tt can be seen that the simulation curve fit
well with the FE result and that the simple form can
be easily implemented in the meso-scale analysis of
plain-woven model.
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Table 2: Mechanical properties of fiber and matrix (15)

Mechanical Young’s modithis Shear modulus Tensile strength Compressive strength Shear strength
properties (GPa) (GPa) Poisson’s ratio (MPa) (MPa) (MPa)
E-glass 73 30 0.22 2760 2208 -

Epoxy resin 3.5 1.30 0.35 112 241 89.6

Table 3: Mechanical properties of varns
Mechanical properties  E, (GPa) Gy, (GPa) Gu(GPa) vy X, (Mpa) X, (MPa) Y, (MPa) Y. (MPa) 8, (MPa) S,(Mpa)
16.792 6.170 5.782 0.245 1935.1 1431.1 109.15 171.73 62.10 62.78

Predicted material properties for plain woven composite:
The four-node linear tetragonal elements were used to
model the yarn and matrix for all cases and the number of
total nodes and elements of model were 30000 and 280000,
respectively (shown in Fig. 7). The volume fraction of
fibers m the composite material 13 47.15%. Since the yams
fiber volume fraction 1s 70%, the volume fraction of the
impregnated varn material in the meso-RUC model is
67.41%. Material properties of tows vary along the
orientation of the path curve; a wser subroutine
UEXTERNALDB 1s developed to capture the orientations
change tow elements. The periodical boundary conditions
are again adopted in this analysis.

Figure 8 shows the computed result for deformation
and distribution of normal stress in loading direction
before the mitial damage occurs. It 1s observed that the
warp yarns are straightened due to the tensile loading and
the weft yarmns are waved more deeply. Figure 9 shows the
damage development and the state of the mmer fiber
bundles. The initial damage is the transverse cracks along
the edge of weft yvams and appears when the loading
strain reaches 0.7% and progresses from the edge to the
center gradually along weft vamns with the increase of the
tensile strain. With further gradual increases of loading,
these cracks extend to the matrix regions and matrix cracks
spread along the transverse direction. When the strain
reaches about 1.8%, fiber damages appear thus the
composite 1s broken.

To verify the predicted results, test samples are
fabricated. The fabric is constituted of 24Tex E-glass
thread with density of 20 ends per centimeters. The area
density of the fabric is 100 g m™. The matrix is epoxy
resin. There are total 34 layers to build the 3 mm thickness
laminate. The fiber volume fraction of the samples 1s
46.7%. The tensile experiments were performed on the
WDW-E2000 testing machine. Predicted and experimental
stress-strain cwrves are shown in (Fig. 10). Good
correlation 18 observed between the predicted and
experimental data. The possible reasons to cause the

Fig. 6 The stress-strain curves of yarns: (a) longitudinal slight difference are perhaps due to neglecting the
tension and compression; (b) transverse tension  distinguishing between the surface layer and interior
and compression; (¢) longitudinal and transverse layers and the layers m the specimen is not strictly
shear periodic in the thickness direction.
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Fig. 10: The normal stress-strain curves of experiment
and prediction

CONCLUSION

The multi-scale is  introduced in
the failure analysis of plain-woven composites.
The micro-RUC of yams was researched with
three-dimensional fimte element method. The yarns
properties, elastic constants and strengths, were obtained
and then used in the analysis of meso-RUC model of
plam-woven composites. The stiffness reduction of both
matrix and yams are considered in particular
orientations. The tensile experiments were performed and
the predicted stress-strain failure history agrees well with

experimental results.

technique
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