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Effect of Surface Tension on Two-Dimensional Free Surface Flow

F. Guechi and H. Mekias
Department of Mathematics, Faculty of Sciences, Ferhat Abbas University, Setif 19000, Algeria

Abstract: Water or fluid flowing on a horizontal half-plane can either detach from the surface when reaching
the boundary or it can continue flowing on the opposite side of the half-plane. The latter phenomenon is called
the "teapot effect”; it has been the subject of many mvestigations over the past decades. Here a two
dimensional flow exhibiting a teapot effect is considered without neglecting the surface tension. The problem
is solved numerically via a series truncation method for various values of the Weber number, 4. We find
solutions for ¢ greater than or equal to 10 and no solutions for ¢ less than 10.
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INTRODUCTION

When a liquid 13 poured from a comntainer, it
sometimes runs down along the under side of the spout
rather than falling as a free stream. This phenomenon
called the "teapot effect” was studied by many authors
(Reiner, 1936; Keller, 1957; Kistler and Scriven, 1994).
Rener (1956) studied the phenomenon expermmentally and
concluded that it i1s neither due to surface tension nor to
adhesion of the liquid to the container surface. Keller
(1957) showed that it 15 explamned by the Bernoulli
principle that the pressure i1s low where the velocity 1s
high, so that the atmospheric pressure pushes the flowing
fluid against the bottom of the spout. Keller gave an exact
solution of the problem when neglecting gravity and
surface tension. Scheidegger (1970) took the idea of the
teapot effect and explamed the formation of hoodoos and
made interesting calculation considering the flowing of
water. Daboussi et al. (1998), Baines and Whithead (2003)
calculated the flow numerically over obstacles of various
configurations.

Tn this note, we approximate this natural phenomenon
by considering a two-dimensional flow over a semi infinite
horizontal plate. We neglect gravity and take into account
the effect of surface tension. The flow is taken to be
wrrotational, incompressible and mviscid. The flow 1s
bounded by the free surface ABC and the horizontal wall
0’00’ Fig. 1. Far downstream the flow is uniform with a
constant velocity U and a constant depth D.

The flow 1s characterized by the Weber number:

pU’ D 1)

Where T 18 the surface tension and p 1s the density
of the fluid.
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Fig. 1. The configuration of the flow. The x-axis 15 along
the horizontal flat board and the y-axis 1s vertically
through the tip system of the board

We compute accurate numerical solutions for the
fully nonlinear problem via a truncation series technique
(Mekias, 1991, Vandan, 1986a, 1986b; Bouderah and
Melkias, 2002; Gasmi and Mekias, 2003) where the mesh
points are only on the free surface. The problem 1s first
formulated as an integral equation for the unknown shape
of the free surfaces then it is transformed to solving an
algebraic non linear system. This algebraic system i1s
solved by Newton's method (Boumahrat and Gourdin,
1991). Qur results show that there is a unique solution for
each value ¢>10 and no solution for <10,

Formulation: Let us consider a two-dimensional flow of
inviscld nrotational and incompressible fluid over a semi
infinite horizontal wall 0’00 and bounded by a free
surface ABC Fig. 1.

We wmtroduce cartesian coordinates with the origin
at the edge of the plate, xaxis along the horizontal plate
0’0 and the y-axis perpendicularly to the xaxis through
the edge of the plate. Far downstream, x--e, the flow
approaches a umform stream with a constant velocity U
and a constant depth D.
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The problem is studied numerically neglecting the
effect of gravity and considering the effect of surface
tension. We define the dimensionless variables by
choosing 1T as the unit velocity and D as the unit length.

We introduce the complex variable z—yx iy, the

complex potential f = ¢4y and the complex velocity £ =
utiv. Where ¢ is the potential function, s the streamline
function and (uyv) are the components of the vector
velocity \—} in the above system of coordinates. We

know, from the potential flow theory that £ = df/dz.
We define the function 1-10 by the relation

& =exp(t—i8) (2)
Without loss of generality, we choose ¢ = O at

B(X_U,O) and | = 0 on the streamline O°QO’. The flow

configuration in the complex potential plane (b, is
illustrated in Fig. 2.

On the free surface ABC, the Bernoulli equation
vields

§+%pa2 :ﬁ+%pU2 onw=1and —eocd<too (3

Where p and a are the fluid pressure and speed

respectively, just inside the free surface. The right-hand
side of Eq. 3 is evaluated from the condition far
downstream.

A relationship between p and P, is given by
Laplace's capillarity formula

P -P,=TK 4)

Here K is the curvature of the free surface and T the
surface tension.
If we substitute (4) into (3), we obtain

K-ly &)
2
We mtroduce the non-dimensional variables
- - - DU’
q:q/U,X:X/D,y:y/D,OL:L

In dimensionless variables (5) becomes

exp(2T)+ 2 exp(T)
o

@‘ —1 on ABC (©6)
do

Here ¢ is the Weber number defined by (1).
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Fig. 2: The flow configuration mn the complex potential
plane
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Fig. 3: The flow domain in the t-plane

The kinematics condition on O’ and OO’ yields

8=0, W=0, —oo L (<0

B=-m, =0, 0<p<eceo (N
T

B=—0, =1, =0
5 v )

This completes the formation of the problem. We
seek T-10 as analytic function of £ = ¢+ in the strip
01 (Fig.2).

Numerical procedure: We define a new variable t by the

relation
2
f= llog Hu] } (8)
m t+1

This transformation maps the flow domam into the
lower half of the unit circle in the complex t plane Fig. 3.

From the potential flow theory, the function £ and {
have no singularities in the flow domain except at O where
we have a flow around an angle of 360°. Local asymptotic
analysis gives
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Hence, we define a function €(t) by the relation

exp(T—i0) = % Q(t) )

The function £(t) 1s bounded and continuous on the
unit circle and analytic in the interior-disk, thus €(t) can
be expanded in the form of a Taylor expansion in even
powers of t. Hence,

exp(T —i0) = % exp(i a, t*y (10)

n=0

The function (10} satisfies (7) if all the coefficients a,
are real. The coefficients a, have to be determined to
satisfy (6).

We use the notation t = |t|exp(io) so that points on
ABC are given by t = exp(io) Using (&), (6) can be written
n the form

(1)

exp(Z%) + exp(%)
.

99
o)—|=1
sing, )80

Here 7(g)and (o) denote the values of T and 6 on

the free surface ABC.

We solve the problem by truncating the mfinite
series in (10) after N terms. We find the N coefficients a,
by collocation. Thus we introduce the N mesh points

[1— J 1=1,..N

Using (10) we obtain [E(G)} L [E(G)J . and

1

2

-

- (12)
2N

o

{88} in terms of coefficients a, Substituting these
i)

expressions into (11) at the point 0, we obtain N nonlinear
algebraic equations for the N unknowns a,, n =1,... N We
solve this system by Newton's method for a given value
of a (here, ¢ 1s a parameter). The shape of the free surface
1s obtamed by integrating numerically the relations:

= exp(—T) cos(e)g—q)
G

ac (13)
9 _ eni—tysin0) 22
P exp(—T)sin(0) 5o

Here X and ¥ are the values of x and y on the free
surface.
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RESULTS AND DISCUSSION

In the absence of gravity and surface tension, the
problem has an exact solution that we can compute using
the hodograph transformation of the free stream line
theory due to Birkhof (1967). The explicit form of the free
surface in x-y plane is given by

X=X, + Elog(l —(cosB))

n (14)

2D

y=—
n

<g+ &)

The turming pont of the free surface (y = 0) 15 at the
ordmmate x = b= 0.429 Fig. 4.

In presence of surface tension and (or) force of
gravity, there is no exact known solution. In our study we
only consider surface tension to evaluate its effect on the
flow. Applying the numerical procedure described in
section 3, we compute the solution for various values of
the surface tension. We note that the surface tension 1s
evaluated through the dimensionless parameter o (the
Weber number). For a fixed value of Weber number « the

coefficients a; of the series Ea 20 were found to
n
n=0

decrease very rapidly Table 1.

T T L) T T 1
-2.00 -1.33 -0.67 U.UL/ 0.67 133 2.00
_‘_’)__,.ﬁﬂ'

-1.33
-2.004

Fig. 4: Free surface flow for o.=1350 (B ¢ = 150, Jcce = 500,

_ @ =800)
Tablel: The series coefficients for different vahies of o
o a ap ay E2 2] aqp
100 -1.005107 5930107 1.19910° 3.831 10° 3.174 107
60 -1.680 107 9738107 2.01210° 6410 10° 7.426 107
20 -5.129107 2811 10*%  542310°  1.303 10° 2.861 104
10 -1.053 100 4.62010* 1121104 1.11810° 4.450 107

Table 2: (;ompafison between the coefficients of the series ia“ 2o and
n=l

n=0 (1+ O.I)I\for x=10

i 1 10 20 30 40
(i) 1.05 100 462107 1.12 10 1.11 10° 4.45 107
(1+0.1y 9.09 10! 3.85 10! 1.48 10! 0.57 10! 0.22 10!
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Fig. 5: Free surface shapes for different values of the
Weber number (¢=10).
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Fig. 6 Free surface configuration without surface

tension, () Via analytical computation by free
streamline theory and (#) Via numerical
mntegration using the present scheme
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Fig. 7. The position of the turming pomt "B" versus
Weber number o
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Table 2 shows that the series ian 3= converges.
n=0

For ¢<10 the numerical scheme diverges and no solution
1s found. Thus 1s probably due to the fact that the surface
tension tends to strengthen the surface as for the teapot
effect tends to bend at the turning point. Hence, there
must be a value of the surface tension (the Weber
number) where the two effects are of the same importance.
This can explam the fact that the scheme diverges.

For a>a, (¢, = 150): All free surfaces for different
values of gz, are the same within graphical accuracy
Fig. 5 and coincide with the graph of the exact solution
without surface tension Fig. 4. This suggests that the
surface tension can be neglected if a> ;.

Fig. 6 shows the free surface shapes for different
values of Weber number ¢>10 where the turning point
changes its position. The effect of the surface tension is
more apparent on the position of the turning point B as
shown in Fig. 7.
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