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Abstract: In this study, a proposed techmique 1s presented in order to evaluate the stochastic mechanical
response. This technique is based on the combination of the probabilistic transformation methods and the
determinmistic Finmte Element Method (FEM). The transformation technique evaluates the Probability Density
Function (PDF) of the system output by multiplying the input PDF by the Jacobean of the inverse mechanical
function. This approach has the advantage of giving directly the whole density function of the response -in
closed form-, which is very helpful for reliability analysis.
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INTRODUCTION

Mechanical modeling of physical systems is often
complicated by the presence of uncertainties. The
implications of these uncertainties are particularly
mnportant i the assessment of several potential
regulatory options. Even though significant effort may be
needed to incorporate uncertamnties into the modeling
process, this could potentially result in providing useful
mformation that can aid in decision making.

For several decades, the theory of probability has
been used in mechanics to model the random structural
properties (materials, geometry, boundary conditions...)
and phenomena (turbulence, seismic wave, loads...) acting
on the mechanical systems. The probabilistic approach
takes into account the uncertainties on the model data n
order to improve the robustness of the forecasts and
optimized configuration. The structural reliability has
become a discipline of mternational interest, addressing
issues such as the performance-based cost-safety
balancing (Procacccia and Morilhat, 1996).

In this research, a proposed technique is presented
in order to evaluate the stochastic mechanical response.
The method is based on the combination of the
Probabilistic Transformation Methods (PTM) for a
random variable (e.g., Young’s modulus or load) and the
deterministic Finite FElement Method (FEM). The
transformation techmque evaluates the Probability
Density Function (PDF) of the system output by
multiplying the input PDF by the Jacobean of the inverse
mechamcal function.

SENSITIVITY/UNCERTAINTY
ANALYSIS METHODS

Conventional methods for semsitivity analysis and
uncertainty propagation can be broadly classified into
four categores: "sensitivity checking", analytical
methods, sampling based methods, and computer algebra
based methods.

Sensitivity checking involves the study of the
model response for a set of changes in model formulation,
and for selected parameter combinations. Analytical
methods involve either the differentiation of model
equations and subsequent solution of a set of auxiliary
sensitivity equations, or the reformulation of original
model using stochastic differential equations. On the
other hand, the sampling based methods involve rumming
the original model for a set of mput parameter
combinations and estimating the sensitivity/uncertainty
using the model outputs at those pomnts. Another
sensitivity method 1s based on direct manipulation of the

computer program, and is termed as automatic
differentiation.
Sensitivity checking methods: In this study

(Sistla et al., 1991), the model is run for a set of sample
points of the concerned parameters with straightforward
changes in structural model. This approach is often used
to evaluate the robustness of the model, by testing
whether the model response changes sigmficantly in
relation to changes in model parameters.
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The primary advantage of this approach is that it
both qualitative and quantitative
mformation regarding variation in the model. However,
the main disadvantage 1s that detailed information about
the uncertainties are difficult to obtain using this
approach. Furthermore, the sensitivity
obtained depends to a great extent on the choice of the
sample points, especially when a small number of
simulations can be performed.

accommodates

information

Analytical methods: Some of the widely used analytical
methods for sensitivity/uncertamty are: differential
analysis methods, Green's function method, spectral
stochastic finite element method, and coupled and
decoupled direct methods.

The analytical methods require access to the
governing model equations and may involve writing
additional computer code for the solution of the auxiliary
equations, which may be impractical and sometimes
mnpossible. For example, reformulating an existing
computational model developed by others could require
prohibitive amounts of resources.

Differential analysis methods: Differential analysis
methods include the Neumann expansion (Tatang, 1992)
and the perturbation method (Tatang, 1995). The
Neumann expansion method mvolves finding the mverse
of the model operator through the expansion of the model
equations, and hence it has limitations on the type of
model equations it can address. The perturbation method
mvolves expansion of model output as a series of small
random perturbations in model parameters, followed by
the solution of the series coefficients. The Neumann
expansion and the perturbation based methods have been
applied in the design and uncertainty analysis of
mechanical structures. The main limitation of these
methods is that the perturbation should be small. Further,
these methods are in general difficult to apply to complex
and nonlinear systems, as the model equations are often
mathematically intractable.

Green's function method: In the Green's function method
(Doughtery and Rabitz, 1979), the sensitivity equations of
a model are obtamed by differentiating the model
equations. The sensitivity equations are then solved by
constructing an auxiliary set of Green's functions. This
method mimmizes the number of differential equations to
be solved for sensitivity. They are then replaced by
integrals that can be easily evaluated.

Spectral stochastic finite element method: This method
relies on the use of stochastic processes m terms of a
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series expansion, specifically the Karhunen-Loeve
expansion (Ghanem and Spanos, 1991). For finite element
problems, this approach results in a set of linear matrix
equations 1n terms of a random vectors. The matrix
equations are solved either using operator expansions or
by using the Galerkin's method. One of the main features
of this method 1s the representation of random parameters
1n terms of orthogonal fumctions of standardized random
variables; the expansion is also known as "polynomial
expansion”  and forms the basis for the
development of the "Stochastic Response Surface

Method" (SRSM).

chaos

Sampling based methods: Sampling based methods do
not require the access to model equations or even to the
model code. These methods mvolve runnmg a set of
sample points, and establishing a relationship between
input and output based on the model results at the sample
points. Some of the widely used sampling based
sensitivity/uncertainty analysis methods are:

Monte Carlo simulation.

Fourier Amplitude Sensitivity Test (FAST)
Reliability based methods

Response surface methods.

Monte carlo simulation: Monte Carlo (MC) methods are
the most widely used means for uncertainty analysis, with
many applications. These methods involve random
sampling from the distribution of input and successive
model runs until a statistically significant distribution of
output 18 obtained. They can be used to solve problems
with physical probabilistic structures, such as uncertainty
propagation stochastic
equations, or can be used to solve non-probabilistic
problems, such as finding the area under a curve. Monte
Carlo methods are also used in the solution of problems
that can be modeled by the sequence of a set of random
steps that eventually converge to a desired solution.
Problems such as optimization and the simulation of
movement of fluid molecules are often addressed through
Monte Carlo simulations (Rubinstein, 1981; Sobol, 1994).

Since these methods require a large number of
samples (or model runs), their applicability 13 sometimes
limited to simple models. In study of computationally
intensive models, the time and resources required for
these methods could be prolubitively expensive. A degree
of computational efficiency 18 accomplished by the use
of Modified Monte Carlo (MMC) methods that sample
from the input distribution in an efficient manner, so that
the number of necessary runs compared to the simple
Monte Carlo methed 1s significantly reduced.

m models or sclutien of



J. Eng. Applied Sci., 2 (2): 319-330, 2007

Fourier Amplitude Sensitivity Test (FAST): Fourier
Amplitude Sensitivity Test (FAST) 15 a method based
on  Fourier transformation of uncertain model
parameters mnto a frequency domam, thus reducing the
multi-dimensional model into a single dimensional one.
For a model with m model parameters, k;, k,,...k, and
n outputs, U, W,...u,, such that v = fi(tk, k,..l)
I1=12 . nthe FAST (McRae et al., 1982) method mvolves
the transformation (Koda et al., 1979) of the parameters
mto a frequency domain spanned by a scalar s, as follows:

k, =G/(sinwg), 1=12..m

The outputs are then approximated as:

Wit = Lj“ u (K, (8),k, (8),... k. (5)ds
2

GP () = LI“ wAtk, (50K, (s). k_ (s)ds — u;
21T

These mtegrals are evaluated by repeatedly sampling
the parameter space of s, which corresponds to the
sampling n the multidimensional model parameter space.
Response surface methods: The response surface
methods consist of following

Screening to determine a subset of important model
mput parameters.

Making multiple runs of the computer model using
specific values and paiwrings of these input
parameters

Fitting a general polynomial model to the model data
(using the method of least squares).

This fitted response-surface is then used as a
replacement for the computer model, and all inferences
related to sensitivity/uncertainty analysis for the
original model are derived from tlus fitted model. This
approach is sometimes termed as a "secondary model
techmque”. El-Tawil ef al. (1990, 1991) describe the
adaptive nature of these methods.

RELTABILITY ANALYSIS

First and Second Order Reliability Methods
(FORM and SORM, respectively) are approximation
methods that estimate the probability of an event under
consideration (typically termed "failure"). In study, these
methods provide the contribution to the probability of
failure from each mput random variable, at no additional
compu-tational effort. These methods are useful in
uncertamnty analysis of models with single failure criterion.
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For a model with random parameters
X = (X, %, 0X%,)
and a failure condition

(X, %,,...,%, ) <0

the objective of the reliability based approach is to
estimate the probability of failure. In case of linit state of
displacement, the failure condition can be defined as

g(x)=D, -D(x) <0

where D, 15 a limit displacement at a location of interest.

If the jomt probability density function for the set x
is given by f,, then the probability of failure is given by
the n-fold integral:

P, = Pig(x) <0} = P{D, < D(x)} = j f dx

gi(x)<0

where the integration is carried out over the failure
domain. The evaluation of this integral becomes
computationally demanding as the number of random
variables (the dimension of the integration) increases; in
fact if m is the number of function calls of the integrand
per dimension and n is the dimension, the computation
time grows as m" (Hohenbichler et al., 1987). In addition,
since the wvalue of the integrand is small, the
numerical inaccuracies can be considerably magnified
when integrated over a multi-dimensional space
(Baldocchi et al., 1995).

FORM and SORM use analytical schemes to
approximate the probability integral, through a series of
the following simple steps, as illustrated by Bjerager
(1990):

Mapping the basic random variables x and the failure
function g(x), into a vector of standardized and
uncorrelated normal variates 1w as x(u) and G(w)
respectively,

Approximating the function G(u) by a tangent
(FORM) or a parabeloid (SORM) at a failure point u'
closest to the origin, and

Calculating the probability of failure as a simple
function of u".

These methods are reported to be computationally
very efficient compared to Monte Carloe methods,
especially for scenarios corresponding to low
probabilities of failure. Further, SORM is more accurate
than FORM, but computationally more intensive, since it
involves a higher order approximation.
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The main drawbacks of FORM and SORM are that
the mapping of the failure function on to a standardized
set, and the subsequent mimimization of the function,
mvolve sigmficant computational effort for nonlinear
black box numerical models. In addition, simultaneous
evaluation of probabilities corresponding to multiple
failure criteria would mvolve sigmficant additional effort.
Furthermore, these methods impose some conditions on
the joint distributions of the random parameters, thus
limiting their applicability.

PROPOSED METHODS (PTM)

The theory of the Probabilistic Transformation
Method or PTM 18 based on the following theorem
(Soong, 1993).

Theorem: Suppose that X is a random variable with PDF
(probability density function) f(x) and A—® 1s the
one—dimensional space where f{x)>0. Consider the random
variable (function of x) Y = u(X), where y = u(x) defines a
one-to-one transformation that maps the set A onto a set
Bc @ so that the equation y = u(x) can be uniquely solved
for x in terms of y, say x = w(y). Then, the PDF of Y is:

g(y)=f[w(y) |

. YEB,

dx  dw

dy dy

/

1s the Jacobian of the transformation.

Input: PDF(x)
f{x) where y = flx)

Find ™
where x =1'(y)

Y

Find |J|. determinant
of the Jacobean

Y

Find PDF(y), using:
PDF(y) =|J|. PDF(x)

Y

Using PDFE(y), find P,
{(Probability of failure)

where, J =

Fig. 1: Algorithm of the proposed method
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The proposed technique is a combination of the
determimstic finite element method and the random
variable transformation techmque. In this technique, the
differential equation solved fustly using the
determimstic theory of fimite element which yields to
accurate nodal exact solutions. These solutions are then
used to obtam the approximate PDF using the random
variable transformation between the input random
variables and the output variable. The accuracy of the
solution is increased when increasing the number of
elements as usual. The algorithm of this method is shown
in Fig. 1.

18

APPLICATIONS

In the first application, we are going to analyze
the reliability of a cantilever beam (Fig. 2) with random
parameters (Young modulus E and the distributed
load W).

FEM modeling the beam with 2 elements: The stiffness
matrix of an element is given by Chateauneuf (2005).

For an element of n nodes, the deformation and the
bendimng stress are given by:

_dvx)
gx)=-u o
o(x) =E.e(x)

Let1=1/2, u, = 0and B, = 0, the assembly of two elements
leads to the following system:

¥
3

2

(12 6L 12 6L 0 0 [u] M+%
6L 4} -6L 2L’ 0 0 |6 wl
8EI| 12 -6l 24 -12L 12 6L |u, | | 3
6L 2L -12L 8 6L 2L |6, | | wi?
0 -12 6L 12 6L | u, 48
e 6L 2L) 6L 4L° |6, | WL
3

wL?

L 48

After simplification, the displacement of third node:

- WL
8EI

u,
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Fig. 2: Cantilever beam

Probabilistic study of u,
Case 1: E uniformly distributed =1(10°%, 3.10%)
Using the proposed technique =

L4
PDF(u,) = |J| PDF(E) = ——
8lu;

4 4 4
WI_E, it WL8 <u, < WL8
=116.10"Iu; 24.10°1 8.10°1
0 ifnot
Reliability analysis: Tet us suppose the limit

displacement 1s u3l = L/180 = 0.0556, it 1s requested to

find the failure probability P; = P(uzu,,).
Numerical values:
w =12kN/m
L=10m
1=1810"
o=
b = PDF(u,) 7du
> 0.0 00536 16.10° Tu? 3
0.0833 12.10° 1
00556 16.10°.1,8.107" 0, 4

Comparison with monte carlo
Proposed method
0.25

Monte carlo simulation(10000)
0.2458

P

Case 2: W normally distributed =N (12,1)
Using the proposed techmque

SEI
U312
L“

T

8EI

.l
L

PDF(u,) =
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Fig. 3: Three-bar truss structure

Reliability analysis: Let us suppose now the limit

displacement is u,, = 1/220 = 0.0455, it is requested to find

the failure probability P, = P{uxu,,).
Numerical values:
E =2.10°kN/m
L=10m
[=18.10"
1{ 3EIu.
- BEI [
Py = uu455PD () .[ woass T4 Jag ® du,

nosss 16.1.8.10° *%[—m’fnlf "B“J 1
; e du :1:0.1347

:L s 10° f2.3,14 ’

Comparison with monte carlo
Proposed method
0.1347

Monte carlo simulation(10000)
0.1328

b

In the second application, we are going to analyze
the reliability of a three-bar truss structure (Fig. 3) with
random parameters (Young modulus E or the distributed
load P).

FEM modeling the three-bar truss: The Stiffness matrix,
in global axis, is given:

Ao A A

[K }m AEB A u? - —u?
L[ =A% = A5 A

U VR VU

Where:
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i =number of element
A = cross section

E =Young's modulus
1 =length of bar
A=cosc

W =sing
& = angle between the element and the horizontal

Element (1): 1-2

{K =cosa, =1

W=sina, =0

The stiffness matrix:

1 0 -1 0
[E](niAE 0 0 0 0
L|l-10 1 0
o 0 0 0
To simphfy, we suppose A'= A, E =E.
Element (2): 2-3
1 i, 2 ~
T
azznfﬁzafez
T noA3
A =cosd, =cos{(——9,)=sinH, =sin— =—
, =cos(3 ~0,) =sin6, =sinT =
. . T n 1
=sino, =sin{——0,)=cosH, =cos— =—
# : (2 :) : 3 2
-}
Y cosB A3
3 3 3 VB
4 4 4 4
NCH B CR |
>0 7® _AE| 4 4 4 4
K] ==
e
4 4 4 4
BB
L 4 4 4 4
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Element (3): 2-4

L

3:7-':_'\(:5 3

7 . .
A =cosd, = 003(5 —8,)=sing, = sz

w=sind, = sin(g -08,)=cos0, = cos%

1,2,

—_1 =1
P ocosy A2

1
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W33 33 W3
‘s 8 8 8
3 3 3 A
Sr..0@ AE| 8 8 8 8
[KJ L 33 3 33 3
s 8 8 8
3 303 NG
. 8 8 8 8 |
1 4 2 -
¥z
2
N5
2
2z 2 2 2]
4 4 4 4
2 2 2 2
_)[KE}@):E 4 4 4 4
Ll 2 2 2 2
4 4 4 4
2 2 2 2
L4 4 4 4]
I P P
44 4 4
22 2 2
N I N
LI W2 2 V2 2
4 4 4 4
I RN
L 4 4 4 4

Using the assembly theorem, the global stiffness matrix is:
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1 0 -1 0 0 0 0 0
0 0 0 0 0 0 0 0
Lo B W32 3+22 33 3fn 2 2

8 8 8 8 4 4
0 o AT 3+ 3 B A2 2
8 8 8 8 4 4
[K]g = E 0 0 _3\/5 __3 ﬁ E 0 0
1, 8 8 8 8
0 0 -3 £ 3 é 0 0
8 8 8 8
0 0 _JE _ﬁ 0 0 ﬂ £
4 4 4 4
0 0 _JE _JE 0 0 ﬂ ﬁ
L 4 4 4 4

Therefore the assembly of three elements leads to the following system

{F=[K[.{U}

Where:
F | fu] [0
F‘IY 1 O
0 u, u,
P v, v,
S RTIEE
3% s 0
E, v, 0
Elx 4 O
7F4y7 L*4d L 0 J
After resolution, the vertical displacement of node 2 1s:
v, =32550
AE

Probabilistic study of v,
Case 1: E(daN/cm?) uniformly distributed =15, 10)
Using our technique =

PDF(v,) = |I|PDF(E) = %PDF(E)
v

2

3.25P, 3.25P115V253.25P11
=1 Avi 10A SA
0 ifnot

Reliability analysis: Tet us suppose now the limit displacement is v,, = 2, it is requested to find the failure probability
Pf=P(vzv,).
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Numerical values:

P=12dan
l,=3cm
A=1lcm’

325P1 2% 3.25x1.2x3 17

3>p = j PDF(v,) j Lay, = [T 2y, = — =017
: S5.v; 100
Comparison with monte carlo
Proposed method Monte carlo simulation(10000)

P 017 0.1681

Case 2: P normally distributed =N(1.2,0.9)
Using our technique =

PDF(v,) =|1|PDF(E) = s 12 PDF(P)

iy
1
AE ] 1 ] 230.9°
3.251, 0.942%
Reliability analysis: Tet us suppose now the limit displacement is v,, = 5, it is requested to find the failure probability
P.=P(vzv,).
Numerical values:
E=5dancm *
], =3cm
A=lcm?
AR
1 -5 25121 Ly
P PDF(v =05y
I (v2) L 3.251, 09Jzn ’
_(5v2 a2
9.75
- Igm—s L T 4y, -2 o5
2 975 0.9y2m 2100
Comparison with monte carlo
Proposed method Monte carlo simulation(10000)
P 0.5840 0.5823

Fig. 4: 25-Bar truss structure
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In the third application, we are going to analyze the
reliability of a twenty five-bar truss structure (Fig. 4) with
random parameters (Young modulus E, section S or the
horizontal load q).

The method of the unit load permits the calculation of
the displacement at a point using the following formula:

the direction of searching displacement, E is the Young's
modulus, S; and L, are respectively the section and the
length of the barT.

By symmetry, the sections of some bars are identical.
We adopt the following distribution:

Bar Section
n 1 S
u=3y NN, L, 2,5,7,8 S
i ES 3,4,6,9 S5
) ) . 10,11,12,13 S,
where N, is the normal effort due to the outside load, N, 14,18,21,25 S;
is the normal effort due to an unit load to the point and in 15.16,17.10,20,22.23,24 8
Nomnal efforts:
Vertical  Horizontal
Bar load load Fxl=1 Fvl=1 Fzl1=1 Fx2=1 F2=1 Fz2=1 Length Li
1 118496 1.57898E-10 -0.44778 3.7646E-17 -0.116842 044778 3.7646E-17 -0.116842 18000
2 -182632 -108058 0.39318 -0.88916 0.4508 031882 -0.04387 -0.08319 25632
3 -103094 -181168 -0.48044 -0.65356 0.101654 -0.38958 0.053606 0.101654 31321
4 -103094 24564 -0.48044 0.65356 0.101654 -0.38958 -0.053606 0.101654 31321
5 -182632 236220 0.39318 0.88916 0.4508 0.31882 0.04387 -0.08319 25632
6 -103094 -34814 0.38958 0.053606 0.101654 048044 -0.65356 0.101654 31321
7 -182632 -227820 -0.31882 -0.04387 -0.08319 -0.39318 -0.88916 0.4508 25632
8 -182632 99670 -0.31882 0.04387 -0.08319 -0.39318 0.88916 0.4508 25632
9 -103094 191418 0.38958 -0.053606 0.101654 048044 0.65356 0.101654 31321
10 -2112.2 27160 0.021874 0.075444 -0.013032 -0.021874 0.075444 -0.013032 18000
11 25438 25416 0.142222 -7.529E-17 -0.010987 0.140172 3.7646E-17 -0.071498 18000
12 -2112.2 -27160 0.021874 -0.075444 -0.013032 -0.021874 -0.075444 -0.013032 18000
13 25438 -25416 -0.140172 7.5292E-17 -0.071498 -0.142222 0 -0.010987 18000
14 -261700 -84148 0.57096 -0.52328 0.35794 0.57524 -0.6071 0.022956 32031
15 -142550 -129638 -0.147116 -0.034886 -0.041108 -0.154788 -0.54426 0.24192 43474
16 -136254 138918 02779 0.17921 0.17797 0.27976 0.122694 0.009951 43474
17 -142550 -78852 0.154788 -0.54426 0.24192 0147116 -0.034886 -0.041108 43474
18 -261700 -322780 -0.57524 -0.6071 0.022956 -0.57096 -0.52328 0.3579%4 32031
19 -136254 -30232 -0.27976 0.122694 0.009951 -0.2779 0.17921 0.17797 43474
20 -136254 -70148 -0.27976 -0.122694 0.009951 -0.2779 -0.17921 0.17797 43474
21 -261700 116470 -0.57524 0.6071 0.022956 -0.57096 0.52328 0.35794 32031
22 -142550 133196 0.154788 0.54426 0.24192 0147116 0.034886 -0.041108 43474
23 -136254 -38536 02779 -0.17921 0.17797 0.27976 -0.122694 0.009951 43474
24 -142550 75296 -0.147116 0.034886 -0.041108 -0.154788 0.54426 0.24192 43474
25 -261700 290460 0.57096 0.52328 0.35794 0.57524 0.6071 0.022956 32031

For the calculation of the horizental displacement u,, at the point 2 according the y direction, due to the lead g,

we put:

u, -4
Y= 180000E

[(1.57898e-10)3.7646e~

[(-108058) (-0.04387) 25632 + (236220) (0.04387) 25632 +
(-227820) (-0.88916) 25632 + (99670) (0.88916) 25632

[(-181168) (0.053606) 31321 + (24564) (-0.053606) 31321 +
(-34814) (-0.65356) 31321 + (191418) (0.65356) 31321

[(27160) (0.075444) 18000 + (25416) (0) 18000 + |
(-27160) (-0.075444) 18000 + (-25416) (0) 18000 |S,

[(-84148) (-0.6071) 32031 + (-322780) (-0.52328) 32031 +
(116470)(0.52328) 32031 + (290460) (0.6071) 32031

[(-129638) (-0.54426) 43474 + (138918) (0.122694) 43474 +
(-78852) (-0.034886) 43474 + (-30232)(0.17921) 43474+
(-70148) (-0.17921) 43474 +(133196) (0.034886) 43474 +
(-38536) (-0.122694)43474 + (75296) (0.54426) 43474

17)18000]§+
} 1
ot
S

2

1
ot
}33

1
1
}Ss

4

1

3
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After simplification, the horizontal displacement of node 2:

- q (E+ 7850040221 + 4285580903 + 73766125, 44 N 1. 464 698 375 = 10" + 6428099237
7 180000Ek 3 3 3 3 3 3

1 2 3 4 5 6
Avec:

E : Young's modulus.

q : Vertical Load.

Si : Section of bar 1.

Probabilistic study of u,,: For simplification, we suppose =S, - 4 (184918.723528)

RS

Case 1: E uniformly distributed =2U(10°, 310%)
Using our technique =

2
¥

PDF(u,,) =|I|PDF(E) —{ d S(184918.723528)}PDF(E)
u

—5
U0 (1gr018.723528) it q(184918.723528) _ P q(184918.723528)
=i 8 3.10°8 7 10°S

0 ifnot
Numerical values:
q=180000N
S = 2000 mm?

Reliability analysis: Let us suppose now the limit displacement 1s u,, = 120, 1t 1s requested to find the failure probability

Pi=Pluzu,).
s -5
S0 (" = ql0 _ 16616642685.118:<10 _
P, = [ PDFu,du,, =[ Lot g (1B1918.723528)du,, = [ o du,, =0.19
¥ yl
Comparison with monte carlo
Proposed method Monte carlo simulation(l 0000)
P 0.19 0.1890

Case 2: g exponentially distributed =»exp(1)
Using our technique =

ES
PDF(u,,) = [PDF(@) { (184918.723528) JPDF(q)
_ ES o~ ESu,,
(184918.723528). 184918.723528
Numerical values:
E=200000
S=2000 mm’

Reliability analysis: Let us suppose now the limit displacement is wu, = 0.0005, it is requested to find the failure
probability Py = (u=u,,).
ES ESuy2

PDF(u,,)du,, =[ o=
(uy;)du, .[uuuus(1849]8_723528) ( 184918.723528

p=[

0.0005 )du

ya

-~ 0.004 4 B - -~
_jmsal.élo e(~4.6107" u_,)du_, = 0.34
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Comparison with monte carlo
Proposed method
0.34

Monte carlo simulation(10000)
0.3382

P

Case 3: S normally distributed =N{20,1)
Using our technique =
q

2
yi

PDF{u,,) = || PDF(S) = 184918.723528) |PDF(S)
’ E

(—2 (184915 7235281207
Byo

4 e

z
uyz

2z

(184918.723528).

1
NG

Numerical values:
q=180000N
E = 200000

Reliability analysis: Let us suppose now the limit
displacement is u, = 8500, it is requested to find the
failure probability P: = P(u=u,).

9 (184918 723528).
u
o iz Ve
Fy :LSDDPDF(uYZ)quZ :Lsnn . ZE(184918.723528)—ZU)2
——e 2 du
Jan v
(L8280
m] 66426 1 22
- T G0
¥In

u.,

Comparison with monte carlo

Proposed method Monte carlo simulation(10000)
Pr 0.33 0.3334
CONCLUSION

In this study, the reliability analysis of mechanical
system with parameter uncertainties have been
considered. The uncertainty has been considered in the
material properties e.g. young modulus, cross section and
in load. The method is based on the combination of the
probabilistic transformation methods for a single random
variable and the deterministic Finite Element Method
(FEM). To proof the performance of the proposed method,
the result is compared with 10000 of Monte Carlo
simulation.
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