Journal of Engineering and Applied Sciences 2 (2): 290-298, 2007
n Ine

© Medwell Journals, 2007

Reverse Engineering of VLSI Chips: A Roadmap

Tarek Sobh, M Khaled Elleithy and Sarosh Patel
Department of Computer Science and Engineering, University of Bridgeport,
Bridgeport, CT 06604

Abstract: The reverse engineering process for VILSI chips is a complex operation that can cost from $10,000 for
the sumplest chips to hundreds of thousands of dollars for complex chips. In this study, we present an overview
of the process of reverse engineering VLSI chips. The study outlines the steps involved m the process of
reverse engineering chips as well as the different techniques used to extract the functionality of these chips.
Furthermore, the paper presents two case studies for reverse engineering VLI chips.

Key words: Architectures, models, VL.SI, multilevel structures, geometric properties, benchmark examples

INTRODUCTION

Reverse engineering can be defined as the

construction of a high-level functional representation of

an implemented system to facilitate one's understanding
of the system. The construction process is algorithmic
and uses the strategy of generating descriptions at
successively higher levels of abstraction. For 1Cs, each
step consists of identifying sets of components that
constitute an abstract function and then recasting the
circuit description in terms of these abstractions.

Designers use reverse engineering to determine
system's specifications, output functions, or other design
characteristics from an existing implementation. This
contrasts with the customary forward (specification to
implementation) design process. Companies often
reverse-engineer their competitors' products to discover
how they are made or to evaluate their quality. In the
software industry, for example, reverse engineering
refers to wupdating, for reuse, programs whose
specifications have been lost or nadequately documented
as described by (Chikofsky and Cross, 1990). In computer
hardware, designers have used reverse engineering to
extract gate-level models from transistor circuits
(Madisetli et al., 1999).

Madiseti et al. (1999) introduced the rationale
for reengineering legacy embedded systems
(Madisetli et al., 1999). Legacy systems are hardware
and/or software systems currently performing useful
tasks but requiring reengineering or upgrading for
various reasons. The most pressing reasons are parts
obsolescence and system needs such as greater
functionality, increased processing and mterface
scalability, better form (size, weight, power, volume) and
decreased maintenance and life-cycle support costs.

Another reason is the availability of superior algorithms,
architectures and technologies that meet or exceed the
system's specifications, often at a lower cost.

Figure 1 from (Chikofsky and Cross, 1990) shows
the relationship between requirements, design and
implementation and where forward engmeering and
reverse engineering fit. Chickosflky and Cross defined the
following terms (Chikofsky and Cross, 1990):

*+ Requirements: specification of the problem being
solved, including objectives, constraints and
business rules

s Design: specification of the solution

¢ Implementation: coding, testing and delivery of the
operational system

¢+ Forward engineering: is the traditional process of
moving from high-level abstractions and logical,
implementation-independent designs to the physical
implementation of a system.

Requi
(Constraints
bject! .
h:imsa:l::) Design Emplementation
Forward Forward
engineering engineering N
Reverse Reverse il .
) | Design g ¢—Desien
Tecovery recovery]
pC— < ,
R . R T
(renovation) {renovation)
/ J J
Restructuring Restructuring Redocumentation
restruchuring

Fig. 1: Relationship between terms
Cross, 1990)

(Chikofsky and

Corresponding Author: Tarck Sobh, Department of Computer Science and Engineering, University of Bridgeport,

Bridgeport, CT 06604

J. Eng. Applied Sci., 2 (2): 290-298, 2007

Reverse engineering: Reverse engineering is the
process of analyzing a system to identify the system
components and thewr relationships and create
representation of the system in another form or at a
higher level of abstraction.

This study provides a literature survey and presents
the most up-to-date reported research m the area of
reverse engineering chips. The first case is the reverse
engineering for the TSCAS-85 benchmark. The second
case 1s the reverse engineering for the AWACS Radar
System by the A Force which 1s a project the Air Force
awarded to Northrop Grumman Corporation for a
proof-of-concept project at capturing the
functionality of the E3 Airborme Warming and Control
Systermn (AWACS) radar system hardware in VHDL.

aimed

Reverse engineering overview: Reverse engineering is
the mverse of the design process (Chisholm et al., 1999).
The design process begins with an abstract description
of a target device and via a succession of refinements,
produces a design that can be implemented directly.
Reverse engineering, on the other hand, begins with
the disassembly of a manufactured device and
culminates with an abstract description of the device's
functionality. In the study of integrated circuits, the
disassembly process consists of obtaimng an mmage of
the internal structure of a circut and extracting a
transistor-level netlist from the image. This description is
then transformed to successively higher levels of
abstraction until a suitably high-level description of the
cireuit’s behavior is obtained.

The key to applying computer-aided software and
engineering the
enhancement of existing systems lies in applying reverse-
engineering approaches. However, there 1s considerable
confusion over the terminology used in both technical
and marketplace discussions. In (Chikofsky and Cross,
1999) the authors define and relate six terms: forward
engineering, reverse engineering, re-documentatiorn,
design recovery, restructuring and reengineering. Their
objective was not to create new terms but to rationalize
the terms already in use. The resulting definitions apply
to the underlying engmeering processes, regardless of the
degree of automation applied.

Electronics products of the future must be realized
efficiently and promise lugher performance at a lower cost
within much shorter product design and upgrade cycles.
ASIC foundries and EDA vendors see increasing VI SI
integration capabilities as a promising new business
opportumty through the System-on-Chip (SOC) paradigm
that extends ASICs design from the component level to

hardware to maintenance and

291

the system level. The systems integration community and
electronics packaging design vendors see the systems
market as an extension of their current business and one
that raises their role to new level of importance n the
product supply chain linking electronics packaging
directly to product specification, early design and ASIC
design. In addition to political 1ssues, there exist techmcal,
legal and business challenges that both paradigms must
overcome to find broad-based acceptance. In (Tummala
and Madisetti, 1999) the authors suggest that the
Systems-on-Package (SOP) paradigm promises a higher
Return on Investment (ROI) at a much lower risk for the
electronics products design, well into the new millennium.

In (Tarzabek and Woon, 1997) the authors start to
formalize what we already know about reverse engineering
and propose a framework for describing and evaluating
reverse engineering methods and tools. First, they build
design models for a source language and for the
recovered design. Then, they describe what a given
reverse engineering method or tool achieves as a formal
mapping from the source language design model into the
recovered design model. They show the use of object
recovery scenarios to illustrate the presented concepts.

By the early 1990s, the need for reengineering legacy
systems was already acute, but recently the demand has
increased significantly (Maller ef al.,). Legacy hardware
and software systems are defined as those that are
currently performing useful tasks, but face possible
interruption or termination of operation in the future
due to a number of reasons (Madisetti et al., 1999).
The push reasons include the need for increasing
functionality, processing and interface scalability,
better form (size, weight, power, volume) requirements,
decreased maintenance and lifecycle support costs
and resilience to parts obsolescence. The pull reasons
can include the availability of superior competing
algorithms, architectures and technologies meeting
(or exceeding) the specifications of the legacy system,
often at a lower cost. Legacy systems can be found
everywhere 1n the military and commercial electronics
area. Indeed, in the commercial arena, electronics systems,
such as PCs and cellular phones, are often obsolete in a
matter of months and increasing pressures of time-to-
market has mstitutionalized re-engineering of products. In
the military arena, the long lifetimes of deployed systems,
decades in the case of radar systems, has made it
inevitable that one 1s faced with the problem of legacy
systems.

The demand by all business sectors to adapt their
information systems to the web has created a tremendous
need for methods, tools and mfrastructures to evolve and
exploit existing applications efficiently, cost-effectively.

J. Eng. Applied Sci., 2 (2): 290-298, 2007

Reverse engineering has been heralded as one of the most
promising technologies to combat this legacy systems
problem. Muller et al. (1996) present a roadmap for reverse
engineering research for the first decade of the new
millennium, building on the program comprehension
theories of the 1980s and the reverse engineering
technology of the 1990s.

Designer's productivity has become the key-factor of
the development of electronic systems. An increasing
application of design data reuse is widely recognized
as a promising technique to master future design
complexities. Since the mtellectual property of a design is
more and more kept in software-like Hardware Description
Languages (HDL), successful reuse depends on the
availability of suitable HDL reverse engineering tools. In
(Muller et al., 1996) new concepts for an mtegrated HDL
reverse engineering tool-set are presented as well as an
umplemented evaluation prototype for VHDL designs.
Starting from an arbitrary collection of HDL source code
files, several graphical and textual views on the design
description are automatically generated. The tool-set
provides novel hypertext techniques, expressive graphical
code representations, a user-defined level of abstraction
and mteractive configuration mechanisms in order to
facilitate the analysis, adoption and upgrade of existing
HDL designs.

Digital designers normally proceed from behavioral
specification to logic circuit; rarely do they need to go in
the reverse direction. One such situation examined in
(Hayes et af, 1999) about recovermg the high-level
specifications of a popular set of benchmark logic circuits.
The authors present their methodology and experience in
reverse engineering the TSCAS-85 circuits. They also
discuss a few of the practical uses of the resulting
high-level benchmarks and make them available for other
researchers to use.

The problem of finding meaningful sub-circuits in a
logic layout appears in many contexts in computer-aided
design. Existing techniques rely upon finding exact
matching of sub circuit structure within the layout. These
syntactic techniques fail to identify functionally
equivalent sub circuits, which are differently implemented,
optimized, or otherwise obfuscated. In (Doom et al., 1998)
a mechamsm for identifying functionally equivalent sub
circuits that is capable of overcoming many of these
limitations 1s presented. Such semantic matching is
particularly useful in the field of design recovery.

In (Prinetto et al, 1998) a new approach for
sequential circuit test generation is proposed that
combines software testing based techmques at the lugh
level with test enhancement techniques at the gate level
Several sequences are derived to ensure 100% coverage
of all statements in a high-level VHDL description, or to

292

maximize coverage of paths. The sequences are then
enhanced at the gate level to maximize coverage of
single stuck-at faults. High fault coverages have been
achieved very quickly on several benchmark circuits
using this approach.

As areal life example of reverse engineering, the Air
Force funded of the Electronic Parts Obsolescence
Imtiative (EPOQI) to ensure Air Force mission readiness
and increase nagging obsolescence (Stogdill, 1999). EPOI
is developing management and re-engineering tools for
defense systems affected by parts obsolescence and
reliability models for commercially manufactured
electronics utilized in defense systems. This initiative
currently consists of eight programs covering three key
areas of study:

Parts Obsolesence Management and Re-engineering
Tools,

The Application of Commercially Manufactured
Electronics (ACME) and

Pilot Demonstration Programs. The initiative's main
technology foci are mixed signal electronics,
Application Specific Integrated Circuits (ASIC),
Physics of Failure validation with commercial field
return data and standardized information exchange.

Reverse engineering techniques: Hayes and Hansen
have defined the following techmques for the reverse
engineering of hardware (Hayes et al., 1999).
Library modules: Common compoenents, such as
multiplexers, decoders, adders and CLA generators, are
found in IC manufacturers' data books or cell libraries
and 1n textbooks. The modules usually exist in variants
due to differences in mput size (fan-in or word length)
and gate types.

Repeated modules: Often a sub circuit whose logic
function 1s not apparent occurs frequently, especially n
data-path circuits where the same circuit slice repeats for
different bits of input data.

Expected global structures: After recogmzing several
modules, the reverse engineer can look for common
structures, signals, or functions that use these modules.

Computed function: With a few structural clues to a sub
circuit's role, we can compute its logic function in
symbolic or binary (truth table) form, then relate it to
known functions or to other circuit functions. This is
feasible only for functions of typically no more than four
or five signals.

J. Eng. Applied Sci., 2 (2): 290-298, 2007

Control function: We can often identify key control
signals whose settings partition a complex function mto
simpler ones.

Bus structures: The outputs of repeated modules often
can be grouped into buses. Further circuit partitioning can
result from noting where these common signals lead.

Common names: When analyzing netlists, we sometimes
find a shared name among several elements. We may not
know what that name implies, but grouping the elements
together temporarily can lead to further structural
insights.

Black boxes: If all else fails, we can encapsulate a circuit
as a module of unknown function or black box. This step
is unavoidable when dealing with low-level control
circuits consisting of truly random logic.

The reverse engineering process: Chisholm ef af. (1999)
They suggested the following outline for the reverse-
engineering process (Tummala and Madisetti, 1999).

Sample preparation: The first step in reverse-engineering
an integrated chip is to extract the chip's design layout.
This involves removing the chip's overburden matenal
either by chemical etching or mechanical slicing, which are
both destructive. Removing the overburden 13 an
extracting process that must adequately expose the
underlying transistors and their interconmnections without
damaging them.

Tmage acquisition: The next step is to scan the sample.
The scamning methodology used depends on the
density of the transistors in the sample. For example, a
state-of-the-art chip may require a Scamning Electron
Microscope (SEM) with a highly accurate stage. The
SEM captures a series of high-resolution images or
micrographs, which are assembled (via stitching or
mosaicking) to form a complete image of the device. The
image is stored as bitmap data.

Geometric description: Next, geometric data is extracted
from the bitmapped image. The software used for this
process converts the image mto a geometric data stream
format such as GDS-II. This process depends on the
knowledge about the implementation technology to
provide recognition of geometric entities.

Transistor netlist: This step transforms the geometric
description into a transistor-level netlist via design rule
checkers that examine the geometric data and recogmze
physical structures such as resistors and transistors.

293

Gate level netlist: This level consists of mapping
transistor cells to gates. Typically, there are a limited
number of mappings, suggesting that a pattern-matching
approach 15 well suited for automating tlus process.
However, the automation approach must be capable of
performing the mapping in the presence of elements that
have no logical function elements but boost a device's
output without affecting the logic.

Module level description: In this step, a module-level
description is to be derived from the gate-level netlist.

Register transfer and behavioral descriptions:
Subsequent abstraction of the module-level description
produces a register-transfer-level description. Further
abstraction results in a behavioral description. At present,
however, these last two levels in the reverse-engineering

hierarchy are beyond typical technological capabilities.

Case study: The ISCAS 85 benchmark: The techmques
presented were used in reverse engineering the ISCAS-85
benchmark circuits in (Hays et al., 1999). We present the
most complex circuit of this benchmark, which is a 34-bit
adder and magnitude comparator with input parity
checking. The number of gates for this circuit is 3512.

Statistics: 207 inputs; 108 outputs; 3512 gates

Function: 34-bit adder and magnitude comparator with
input parity checking

This benchmark circuit given m Fig. 2 contains a
34t adder (M5-Fig. 3), a 34 bit magmtude comparator
(M8-Fig. 4) using another 34 bit adder and a parity
checker (M9-Fig. 5). Each of the XA, YA and YB buses is
fed by a set of 2:1 multiplexers controlled by the Sel input.
Bits 31-22 of XA and YB can be set to logic 0 with the
Mask input. The two adders M5 and MR are identical and
are of carry select type, as are those of ¢5315. They
consist of alternating 4 and 5 bit blocks, with the last
block being 2 bits. The comparator (M8) of this
benchmark 1s similar to that of ¢2670. It performs the
comparison YB>XB (if Sel = 0) or YB=IYAIL (if Sel=1) by
calculating YB+HXB (if Sel = 0) or YB+!YAL (if Sel = 1)
(Note: the mput bus YAI 1s assumed to be inverted). The
comparator has an output (CoutY) for the whole 34 bit
inputs as well as an output (CoutY 17) for the 17 bit
portion of its inputs. Module M7 calculates the parity for
the following four parts of the adder output Sum:
SumX[8:0], SumX[17:9], Sum¥[26:18], SumX[33:27].
Module M$ appears to be a type of sanity checker that
calculates the AND of the parities of all its inputs.

J. Eng. Applied Sci., 2 (2): 290-298, 2007

M6 (Sum) — SumX[33:0]
e [SuUmPak, ,
M1 Sel XYAext v L isumpek,
XA0[31:0] ! R iy
XA1[31:0] }E_y[ssm MS (Adder X) - o
T PX LEinpX
Mask |-/ Y
GP LdinlX
X330 D~— R GX csA J ﬁ::ox
CinX—] L CoutX-CoX,,
_ M9)
(Parity check) ParCheck[3:0]
M3 Sel XYAext M8 (Aadder Y)
YAO[31:0] \ | 'yapa:0] Ciny—]
YA1[31:0] +—i / L CoY,,
by CsA
M4 Sel XYBext GP | gy | CoutY =CoY,,
YBO[31:0} j
YBIBL0] , YB[33:0]

Fig. 2: ISCAS-85 benchmark circuit

GP[40] GP[8:5] GP[I39] GP[I7:14] GP[22:18] GP[2623] GP[3127] GP[33:32]
1 | 1 1 1 | 1 1

5-bit 4-bit 5-bit 4-bit 5-bit 4-bit 5-bit 2-bit
block block block block block block block block
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
®oox B X = = oo 8 g g oo Boe
E F F 5 £ £ B E ¥ B B B X B
3 ¥ 2 8 g 8 & F g & E F g & & s
= S 3 = 85 28 2 5 S
G P
1 I
CinX —f —€oX[33, 31, 26, 17, 13, 8, 4]
Calculate carry (Pivot catries)
LCin0X, LCinlX — | CoX[30-28, 21-19, 12-10, 1-3]
Note: Carry[i] = carry from bit position i to (i+1)
Model M6 (SUM)
CoXI[k]
Piil
Pfi] , LCinOX[i-1]
cox[i-l]j:>— SumX[i] SumX[i]
Pi]
i=05,9-14,1823,27-32 LCin1X[i-1]

i=6-8, 15-17,24-26,33, k="Pivot carries: 4, 13,22, 31

Fig. 3: MS/CSA and sum modules of the benchmark circuit

294

J. Eng. Applied Sci., 2 (2): 290-298, 2007

CinX

SumPar0,, SumPar,,
SumParl,,
LCin0X,

SumPar, , CinX
SumParl,,

SumPar, ,

LCin1X,

Model M7 {Sum Parity)

CoX,
SIJIIIPGI'O,_,, SumPar,

SumParl,

ISumPar, ,
(!1SumPar[0])

LCin0X,,

SumPar,, ,, CoX,
SumParl , .,

SumPar,, .|

SumPar{,,,,
SumParl,,,,

LCinlX,

SumPar0,;,
SumParl,, ,,

SumPar,, ,,

(Smbap) SumPad.,

SumParl,, ,,

SumPar{,, ,,
SumParl,, ,,

LCinlX,,

Fig. 4: Cireuit of M7 module of the benchmark circuit
Module M9 (Parity Check
Sel XA[3L0] YA[3L:0] YB[3L0]
PxAD [6:0—] PCxA [5:0] L I I
PCXAL [6:0]
Sel
PCyA0 [6:0] ™ poya 50)
PCYAL [6:0] (501 Parity trees |— ParCheck [3:0]
Sel
PCyno (50— peve [s:0]
FCYBI [6:0]
| |
Stbin [15:0] SwbOut [3:0]

to- ParCheck[2]
1

ParCheck[1}oc} | pso-ParCheck[3]
L)
SrbOut[l]] SrbOut{1] FarCheck{U]
Strb In[3:0]
Strb If7:4] [Sirb,,
Strb In[11:8]
Strb In[15:12] Strb,,

StrbOut2] StrbOut3]

Fig. 5: Circuit of M9 module of benchmarlk

295

1SumPar, ,,
(tSumPar{1])

1SumPar,,.,
(tSumPar{3])

J. Eng. Applied Sci., 2 (2): 290-298, 2007

Models used

I Original ISCAS gate-level netlist
. in ISCAS-89 format
. mn Verilog

I Verilog hierarchical netlist (functionally equivalent
toI)

IO Verilog flat netlist (flat version of II; functionally
equivalent to I, but with minor structural differences)

Detailed bus definitions

- XA

« XA [21:0] = XAO0 [21:0] if Sel =0, XAl [21:0] if
Sel=1

o XA[31:22] = XAO[21:0]. Mask if Sel =0, XA1[21:0].
Mask 1f Sel =1

o XA[32] = XA[33] = XY Aext

- NotXB:

+ NotXB[0]=! XB[0]if Sel = 1, logic 0 if Sel =0
« NotXB[31:1]=!XB[31:1]

¢ NotXB[33:32] =! (XB[33:32]. XYBext)

-YA:

¢ YA[O]=logicl if Sel =0, YAI[0] if Sel =1

* YA[31:1]=NotXB[31:1]if Sel =0, YA1[31:1]if Sel =1
¢ YA[32]=YA[33] = XYAext.

-YB:

e YB[21:0] = YBO[21:0] if Se 1= 0, XA1[21:0] if Sel = 1

« YB[31:22] = YBO[21:0]. Mask if Sel = 0, XA1[21:0].
Mask if Sel =1
e YB[33:32]= YBO[33:32] + | XYBext

- XBbuf[33:0] = XB[33:0]

-PCYAObuf[3:0] = { PCYAO[6], PCYAO[3], PCYAO[2],
PCYAO[0] }

Table la and b shows the detailed inputs and outputs
and the corresponding nelist numbers.

Evaluation: The reverse engineering process reported in
(Hayes et al., 1999) starts with gate level representation
towards higher levels representations. Tlis process 1s
different from starting from a physical chip and extracting
transistor information then synthesizing gate level
information.

A circuit of 3512 gates is a very small circuit
compared to complex chips that contain millions of
transistors.

Table 1a: Inputs and corresponding netlist numbers

Tnput Netlist No.

XAQ[31:0] 213, 214, 215, 216, 209, 153, 154, 155, 156,
157, 158, 159, 160, 151, 219, 220, 221, 222,
223, 224, 225, 226, 217, 231, 232, 233, 234,
235, 236, 237, 238, logic 0

XA1[31:0] 10 *{logic 1}, 135, 144, 138, 147, 686, 50, 32,
35, 47, 121, 94, 97, 118, 100, 124, 127, 130,
103, 23, 26, 29, 41

XB[33:0] 1496, 1492, 1486, 1480, 106, 1469, 1462,
2056, 2253, 2247, 2239, 2236, 2230, 2224,
2218, 2211, 4437, 4432, 4427, 4420, 4415,
4410, 4405, 4400, 4394, 3749, 3743, 3737,
3729, 3723, 3717, 3711, 3705, 3701

YAIL[31:0] 88, 112, 87, 111, 113, 110, 109, 86, 63, &4,
85, 84, 83, 65, 62, 61, 60, 79, 80, 81, 59, 78,
77, 56, 55, 54, 53, 73, 75, 76, 74, 70

YBO[33:0] 2204, 1455, 166, 167, 168, 169, logic 1, 173,
174, 175, 176, 177, 178, 179, 180, 171, 189,
190, 191, 192, 193, 194, 195, 196, 187, 200,
201, 202, 203, 204, 205, 206, 207, logic 0

!Sel 18

CinX, CinY 4526, 89

Mask=!Mask1+!Mask2 112, 9

Mask1, Mask2

XYAext, XYBext 38, 4528

PCXA0[6:0] logic 1, 211, 212, 161, 227, 239,229

PCXAIL[6:0] 3%#{logic 1}, 141, 115, 44, 41

PCYAO[6:0] 1459, 1496, 1492, 2208, 4398, 3701, 3698,

PCYAL[6:0] 114, 2204, 1455, 82, 58, 70, 69

PCYBO[6:0] 170, 164, 165, 181, 197, 208, 198

StrbIn[15:0] 199, 188, 172, 162, 186, 185, 182, 183, 230,
218, 152, 210, 240, 228, 184, 150

MiscIn[7:0] 57,5, 133, 134, 1197, 15, 163, 1

Table 1b:Outputs and corresponding netlist numbers

Output Netlist No.

SumX[33:0] 469, 471, 327, 330, 333, 330, 324, 298, 301,
304, 307, 310, 313, 316, 319, 205, 347, 350,
353, 356, 350, 362, 365, 368, 344, 376, 379,
382, 385, 388, 301, 304, 397, 373

!'SumPar{ 3:0] 338, 321, 370, 399

CoutX1, CoutX2
CoutYl, CoutY2

{270, 246) *, (273, 276) *
(258, 264) *, 249

CoutY_17 252

ParCheck[3:0] 416,414, 412, 418

XBbufl33:0] 440, 438, 442, 444, 446, 448, 436, 480, 482,
484, 480, 488, 490, 492, 494, 478, 524, 526,
528, 530, 532, 534, 5306, 538, 522, 544, 546,
548, 550, 552, 554, 556, 558, 542

StrbOut 410, 408. 406, 404

PCYAObuf]3:0] 450, 496, 540, 560
MiscOut[3:0] 402, 289, 202, 279, 278, 2
* (a,b): a,b are identical outputs

A real life example of reverse engineering: Tthe
redesign of the awacs radar system by the air force:
In August 1997, the Awr Force awarded Northrop
Grumman Corporation a proof-of-concept project aimed at
capturing the functionality of the E3 Awborne Warning
and Control System (AWACS) radar system hardware
in VHDL. The Air Force Research Laboratory Materials
and Manufacturing Directorate and Northrop Grumman

J. Eng. Applied Sci., 2 (2): 290-298, 2007

Table 2: Cost analysis

Ttem Cost

Saving per card $470,000
Saving for 33-AWACS fleet $15,100,000
Cost for redesigning each board using current technology $250,000
Cost for redesign the 17 boards $4,250,000
Cost of reverse engineering the board $1,000,000
Saving per system $3,250,000

funded this effort jointly. The project evaluated the
cost-effectiveness of describing the AWACS radar
synchronizers' functions in VHDL code and using the
VHDL model to redesign circuit card assemblies plagued
by parts obsolescence.

During the AWACS' long life cycle, designers have
developed several configurations of its AN/APY-1 and
AN/APY-2 synchronizers. The current synchronizer is a
two-level card cage that resides in the radar's analog
cabinet. It consists of 29 circwuit card assemblies, of which
18 are unique styles and 17 contain a large number of
obsolete components, making them unsupportable or
irreparable.

Northrop Grumman successfully developed a process
to capture the AWACS synchronizer functionality with
VHDL code. Using the code, they needed less time than
usual to redesign each assembly. Also, they could use the
latest VHDL model of the hardware as a baseline when
mserting new technology. Another advantage was that
one VHDL design could replace multiple circuit card
assemblies that could not be repaired and for which no
spares were available. For approximately the same cost as
replacing the single, failed circuit card assembly, a
replacement containing the functionality of a whole
group of assemblies could be inserted mto the system.
The smaller number of assemblies would cost less to
procure and the new system would be more reliable.
Table 2 shows the cost items in the reverse engineering
of the board.

The results of this proof-of-concept project serves as
a model for further reducing the number of circuit card
assemblies in the AWACS radar. The process model
Northrop Grumman used to develop the VHDL designs is
applicable to all defense systems. More details of this
example can be found in (Stogdill, 1999).

CONCLUSIONS

In this
reverse engineering process of VLSI chips. We discuss

study we present an overview of the

the steps inwolved in this process. Two case studies
are rteported. In the first study, we the
reverse engineering process of ISCAS-85 benchmark.

examine

297

In the second study, we examine the reverse engineering
of the AWACS radar system.

Reverse Engineering the TSCAS-85 benchmark starts
with a gate level representation and advances in steps
from lower levels to higher levels of representation. This
process is different from starting with a physical chip,
extracting transistor mformation then synthesizing gate
level information. Furthermore, the most complex circuit
used has 3512 gates, which 1s a very small circuit
compared with current chips that contain millions of
transistors.

Reverse engineering of the AWACS Rader System by
the Air Force was a proof-of-concept project aimed at
capturing the functionality of the E3 Awborne Warning
and Control System (AWACS) radar system hardware in
VHDL.

Although Reverse engmmeering has experienced
increased attention since the mid-1990s in the United
States Department of Defense (DoD) as well as the
commercial arena, most reported approaches in literature
are ad-hoc. The future of reverse engineering will certamnly
include automated methods of reverse engineering using
systems to measure, manufacture and test components.
Finally, from a systems poimnt of wview, a reverse
engineered component will be more reliable than the older
design which will mcrease system reliability, shorten
design time and improves output productivity.

REFERENCES

Chikofsky, E.J. and I.H. Cross, 1999. Reverse engineering
and design recovery: A Taxonomy. IEEE Software,
pp: 13-17.

Chisholm, G., S.T. Eckmann, C.M. Lain and R.L. VerofT,
199%. Understanding Tntedrated Circuits, TEEE Design
and Test of Computers, pp: 24-34.

Madisetti, VK., YK. Jung, MH. Khan, J. Kim, T. and
T. Finnessy, 1999. Reengineering legacy embedded
systems. IEEE Design and Test of Computers,
pp: 38-47.

Tummala, R.R. and V.J. Madisetti, 1999. System on chip
or system on package. TEEE Design and Test of
Computers, pp: 48-56.

Jarzabek, S. and I. Woon, 1997. Towards a Precise
Description of Reverse Engineering Methods and
Tools. 1st Euromicro Working Conference on
Software Maintenance and Reengineering, Singapore.

Muller, H A, TH. Jahnke, D.B. Smith, M. A. Storey,
S.R. Tilley and K. Wong, Reverse Engineering: A

Roadmap.

J. Eng. Applied Sci., 2 (2): 290-298, 2007

Mueller-Glaser, K.D., G. Lehmann and B. Wunder, 1996.
Basic Concepts for an HDI. Reverse Engineering
Tool-Set. International Conference on Computer-
Aided Design (ICCAD '96), Germany.

Hayes, I.P., M.C. Hansen and H. Yalcin, 1999. Unveiling
the TSCAS-85 Benchmarks: A Case Study in Reverse
Engineering. TEEE Design and Test of Computers,
pp: 72-80.

Doom, T., . White, A. Wojcik and G. Chisholm, 1998.
Identifymg High-Level Components in Combinational
Circuits. Great Lakes Symposium on VLSI 98,
Michigan, pp: 313.

Prinetto, P., R. Vietti, EM. Rudnick, F. Corno and
A, Ellis, 1998. Fast Sequential Circuit Test
Generation Using High-Level and Gate-Tevel
Techniques. Design Automation and Test in
Burope, pp: 570.

Stogdill, R.C., 1999. Dealing with Obsolete Parts. TEEE
Design and Test of Computers, pp: 17-25.

298

