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Abstract: In this research, the refusal of technical objects i mass production uses Neural Network as a model.
A neural network is a collection of interconnected elements or units. However, the phrase neural network
means an amazing variety of things to a remarkable diversity of researchers. For biologists it refers to a mass
of gray matter or, perhaps, a biclogically faithful model of some part of the bramn. For psychologists and other
cognitive scientists, 'neural' (or 'connectiomst') network denotes a virtual machine architecture that has come
to be seriously considered as a model of the mind. To a theoretical computer scientist, 'newral network' is likely
to mean a network of threshold logic gates. But to some computer scientists, a neural network 1s a Markov
process, evolving through time in a stochastic search for globally optimal states. And to still others, a neural
network is a collection of analog devices, continuously evolving in time under the direction of certain
differential equations. To a physicist, a neural network may be a dynamical system evolving n time toward
attractors of various types, or it might be a low-level substrate over which large-scale average behavior can be
studied in the manner of statistical mechanics. To a functional analyst, a neural network is likely to be a
particular kind of function approximator. To statisticians of various sorts, neural network learning 1s a realization
of a scheme for estimating parameters and selecting among different models using Bayesian or information-
theoretic or maximum-likelihood methods.
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INTRODUCTION However, the computational and dynamical
perspectives  also address the learming component,
In short, of what was mentioned above, neural  since the computational difficulty of the learning

networks are dynamical systems that compute functions
that best capture the statistical regularities in traming
data: Their study inevitably brings together concepts
from dynamical systems theory, computation theory and
statistics. Correlated with, but logically independent of,
the tripartite division of computational, dynamical and
statistical perspectives, there 1s the following tripartite
decomposition of a neural network: Processing-given the
architecture and weights, computes output activation
from input activation. Learning-given an architecture,
computes the weights from training data. Representation-
given a task domam, computes the domain interpretation
of mput/output activation patterns.

The processing component of a neural net i1s an
algorithm (or set of dif- ferential equations) by means of
which activation patterns input to the network are
converted into activation patterns that comprise the net's
output. The computational and dynamical perspectives
tend to address this component most, since the
mput/output function computed 1s of primary concem
to the computational perspective and the dynamics by
which it is computed is of central interest to the dynamical
perspective.

problem and the weight dynamics of learming algorithms
are both of great interest. It 1s the statistical perspective,
though, that has the most to say about the central
problem in most neural network learning: what are
justifiable procedures for drawing inferences from given
traimng examples to unseen data-the problem of
induction.

The third component, representation, is the least-
studied aspect of neural networks: it concerns the link
between the input/output activation patterns and the
items that they encode from whatever domam the
network's problem comes. In a vision application, for
example, the input activation pattern might be interpreted
as an unage.

MATERIALS AND METHODS

The method of modeling of refusals in which
similarity of technical objects and modeling neural
networks reflects not only the structure of object and
meodel, but also a level of their damage 1s considered.
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The major question of Technical Object (TO)
durability estimations is a substantiation of criteria of its
refusal. The estimation of a resource is closely connected
to the decision of this question that is determined by its
operating time before a limiting condition after which
achievement operation TO should be stopped.

Refusal-the event consisting of infringement of an
efficient condition of what 1s determined by the list of
the given parameters and allowable limits of their
change-admissions. Infringement of an efficient condition
consists of output of value, even one parameter for the
established admission. The attributes, allowing
establishing the fact of infringement of an efficient
condition, are criteria of refusal. For many objects, until
now, these criteria are not yet determined which results
in inconsistency in estimation of their condition at
operation and tests. A basic choice of criteria for a limiting
condition is the treatment of resource and probability of
non-failure operation as stock of serviceability TO.
While the stock 1s significant, there 1s no basis to
consider a condition limiting. In view of this, there must
be an action to distinguish criteria of refusals TO from
criteria of its limiting condition (Kogel, 1981).

Attributes of refusals and limiting conditions TO
are: The discontinuance of performance of the given
functions by 1t A deviation of the given parameters of
quality from the established norms. Refusals and a limiting
condition of components of object that result in the
discontinuance of functioning of object oran output of
its parameters for the established norms. Occurrence of
the processes interfering functioning of object. And
exhaustion by object of the appointed resource or the
appointed service life. The important factor when
accepting the decision on refusal is also economic.
Sometimes it is impossible to get a new one so it is
necessary to maintain a limiting condition TO. On the
other hand, it is impossible to dismiss the social factors:
prestige, style and others. There are times when even an
automobile is still considerably efficient, it is being
replaced only because it has been socially obsolete.

The simplest for many TO criterion of refusal 1s
breakage (Pankratov and Barkovsky, 1998). However, this
criterion does not always happen satisfactorily. Process
of fatigue failure TO 13 difficult and completely not
investigated, therefore the precise criteria determining the
moment of fatigue failure until now are not yet produced.
In this comnection, criteria of refusal are various: the
beginning of macro-crack formation, length of a crack,
sharp fall of loading or frequency cycles, significant
growth of deformation, etc.

Even the identification of refusal that has occurred
in the past represents serious difficulties that are not
only technical, but also economic and social in character.
The difficulties repeatedly grow when the question is

refusal forecasting. Tt is possible however, to apply
identification and forecasting of TO refusal with modemn
intellectual technology. This is with the help of modeling
Neural Networks (NN). TO and NN have established a
conformity in their structures, The list of elements and
commurnications between them and their functions
(Abovski, 1998). This is for maintenance in similarity.

It 18 obvious, if such conformity is proved, NN mputs
values of parameters of external and internal influences
then act on TO in operation on the data NN outputs. Tt is
then possible to mterpret its current condition (for
example, size of a pressure, deformation, temperature) on
which it is possible to judge its serviceability indirectly.
Such way is possible to relate such approach to the first
level NN-modeling. At the second level of modeling, NN
inputs values of parameters of external and internal
influences, this also acts on TO, but output only forms
one binary signal: “refusal present-refusal is not present”,
that is NN takes up the responsibility for refusal
identification (Kallan, 2001).

The approach to identification of refusal which can
be related to the third level of modeling and on which
construction of model TO, 1s based on where NN 1s
offered. Tt is accepted what not NN “makes”, but how it
“makes”. Atthis level of modeling TO, NN does not only
have structural and functional similarity, but alse rules of
interpretation of a condition TO, known NN “behaviors”
are formulated. The matter is that, an offered method on
NN that mputs any information on TO does not move.
Hence, NN outputs a condition TO and are not compared
to each other. Within the framework of this method and
object, NN model performs work that 1s traditional for
them,-for example, NN distinguishes images and TO
moves a cargo. An object obtains fatigue damages of
natural elements. For example, communications, such
“damages” bring artificial, excluding from it separate
neural or stopping communications between them. Thus
strict conformity between a condition of sunilar elements
and communications-both in NN and in TO- are important.

For identification of refusal, how NN distinguishes
images must be maintained. If “damaged” NN continues
to make it without mistales or with below given threshold
quantity of mistakes appropriate to its damage, TO is still
considered efficient. If “damaged” NN after the next
iteration of “damage” looses distinguished image ability,
then appropriate TO is considered given up.

RESULTS AND DISCUSSION

The simplified TO as the cascade of mass-changing
devices are considered in an example-mixers 1, joint
among themselves by pipelines 2 with valves 3. NN
model shows them as neurons 4 and links between them
5 (Fig. 1 a, b accordingly).
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Fig. 1: The cascade of masschanging devices (a) and it
NN model (b): 1-The mixer; 2-The pipeline; 3-A
valve; 4-A neuron; 5-Llink between neurons

On three TO mputs on pipelines, mitial pool
components as solutes of different mass density act and
from its three outputs products of mass-changing as
solutes of other densities are seeded. Results of operation
of the cascade depend on amount and density of acting
solutes, its structure (an amount of elements 1 and about
links between them 2) and customization of the valves 3,
located on all pipelines before their mmput m the
appropriate mixer.

To the cascade, damages maybe treat outage of
mixers 1 (for example, because of the cage destruction) or
termination of operation of pipelines (for example, because
of abruption or hard deposit closing). Enough ramified
circuit of the cascade outage of some of mixers and
pipelines at correct customization of valves does not
result m an exit for a field of tolerances of make-ups of
solutes n exit from the cascade. As soon as damages
reach some quantitative and qualitative degree while
connected to their arrangement places, makes up solutes
on exit wherein it ceases to match TO tolerances and thus
the condition of TO may be qualified as refusal.

Reduce NN structure, which is no problem to model
TO refusal and TO may have a structural similarity on
elements (the mixer 1-a neuron 4) and links between them
(pipelines 2-links between neurons 5).

The functional elements similarity implies from the
following reasons. Let the element TO represents the
chemical device-the mixer having three bulk fitting pipes-
inputs and one drain-an output.

Inputs of the mixer solutes of the same substance
the same solvent, but with different mass densities and
fractions from a total amount of the solute, has arrived in
the mixer through three inputs act. It 1s supposed also,
that the volume of the mixer 1s great encugh, that during
normal maintenance its overflowing did not occur and
receipt and exception of initial substances and products
of mass-changing occurs discretely at the end of each
iteration of simulation.

Let densities of soluble substance on inputs 1, 2 and
3 are accordingly equal cl, ¢2 and ¢3 and mass fractions
of solutes-c1, a2 and ¢3 and ¢1+¢2+a3 = 1. Then density
of soluble substance n mixture 1s equal:

CZ:an (1)

The scheme of the formal neuron structurally similar
to the modeled mixer also has three mputs and one
output. Believing displacement equal to zero and
activation fimetion-linear, the expression linking a signal
on an exit of such newron y with signals on its inputs xi is
possible to write down:

y= Z X.a. (2)

Where, ai-a flowing condition- is a valve throughput that
actually plays a role of a weighting coefficient at the
appropriate pipeline.

From formulas (1) and (2) 1t 1s visible, that NN umage
;18 v, images ¢i -xi and ¢ represent images of weights ai,
appropriate solutes bounding receipt in the mixer.
Practically regulation of weights a1 on inputs of the mixer
1s carried out with the help of the appropriate valves.

For the formulation of a condition, TO interpretation
rules on known NN “behaviors” is necessary to consider
reduced. In an example of TO and modeling, NN 1s
represented as problem spaces A and B. The space A 1s
a set of all combinations of possible damages TO plus an
initial unimpaired condition and space B, accordingly, set
of all possible combinations NN “damages” plus mitial
“non-damages” its condition. At exception of those or
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other elements or the links connected to damages in TO,
also elements of spaces A and B the same way vary. The
mutual uniqueness between spaces of TO A and model
B is 1somorphic conformity (Korosh, 1971). At such
conformity, functional links between elements of spaces
A and B are linear, hence follows that, at any isomorphic
changes of condition TO and NN refusal in execution of
trial functions occurs at them simultaneously.

CONCLUSION

The method 1s convement, if for any reasons
immediately to estimate a condition TO inconveniently. In
these situations decision making about refusal on a
condition similar NN may appear umique. As to the
forecast, the NN model 15 extremely useful. In this case the
future “damages” are deposited to model by casual image
or with preferences, founded on field experience similar
TO (Balan et al., 2001).

The offered method 1s used during projection and
maintenance of mass-changing devices. The equipment
bolstering given conditions of maintenance at significant
damages and providing prediction of its refusals 1s
created.

APPENDIX A-NEURAL-NETWORK COMPUTERS

Computer systems with self-learming and self-
adaptive capabilities are increasingly finding their way
onto the market. Neural networks, modeled after the
human bram, may soon lead to an inexpensive voice
typewriter, intelligent household robots and a host of
other "smart" technologies.

A simple neural network comsists of layers of
processors interconnected somewhat like the neurons of
biological nervous systems. Users "train” a network by
giving it a set of data and the desired outputs. The
network "learns” by finding ways to approximate the
desired outputs.

Neural networks are already being used m
telecommunications, handwriting recognition, risk
analysis, machine vision and robotics. Neural-network
products are also being tested commercially in systems to
diagnose diseases, determine credit ratings and even
COIMpose music.

Toseph Weintraub, president of Thinking Software,
Inc, of Woodside, New York, predicts that neural
networks will lead to an inexpensive voice typewriter,
which can be trained to recogmize the voices of several
users, i three to five years. He also believes neural
networks will soon help intelligent robots to do more
household chores, including cleaning windows. You
will train your personal robot by putting it through its
paces once or twice with a handheld remote control
device.

Neuwral networks may also prove a boon in
understanding the human brain. Neural modeling permits
fascinating mterplays between engineers and biologists,
says Tyler Folsom, a software engineer at Flow Industries
1n Seattle. A biological structure may inspire a computer
simulation of a simplified neural network. The model in
turmn may predict behavior that the neurologist has not
observed and that may be verified or disproved by further
experimentation.

Despite their great promise as a self-learning
computer technology, neural networks face many years of
development before they can achieve the intelligence of
primitive animals, says Folsom. Tt may be that [the]
genetic code includes built-in assumptions about the
world that have not yet been incorporated into artificial
neural systems, he notes.
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