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Anisotropic Effect on Elastic Interaction Between Dislocation and General
Grain Boundaries in Some Hexagonal Metals: Be,Y, Zn
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Abstract: In this study, we examine the anisotropic effect on elastic interaction between dislocations and
general grain boundaries for hexagonal metals; Be Y and Zn. In the setting of the anisotropic linear elasticity
in continuous media the calculations of the elastic interaction energy AE have been gotten by Head then to be
mmproved by Barnett and Lothe. The dislocations in elastic interaction with a grain boundary in a bicrystal of
an elastically anisotropic material are submitted to an image force Fi = -AE/d. The results are represented in
isoenergy cards on a stereographic projection. The result showed that the interaction energy is inversely

depends to the factor of anisotropy H. The maximal energy of interaction is lower then 14 pJ m™ its always
weaker compared to the case of the cubic metals where it is of the order of 100 pJ m™". The image force can be
attractive repulsive or null. The proportion of attracted dislocations depends to the disorientation and the factor

of anisotropy H.
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INTRODUCTION

The mechamcal properties of the polycrystalline
materials are greatly affected by the mteraction of lattice
dislocations with grain boundaries. The objective of this
study 1s to investigate the anisotropic effect on the elastic
mnteraction between dislocation and grain boundaries. The
calculation of elastic nteraction energy in the hexagonal
metals, Be, Y and Zn, completes previously results gotten
by Khalfallah and Priester (1999), Priester (2001) and
Moulahem (2002). In a bicrystal of elastically anisotropic
material the dislocations in elastic interaction with grain
boundaries are submitted to image force due to the
disorientation between the two crystals (Stroh, 1958;
Head, 1965; Tucker, 1969, Willis, 1970, Barnett and
Swanger, 1971, Barnett and Lothe, 1975, 1985; Ting and
Barnett, 1993; Wu, 1998, 1999). In the setting of the
anisotropic linear elasticity theory mn continuous media
the calculations of the elastic interaction energy have
been gotten by Head then by Barnett and Lothe.

Concepts and calculation of the image force: In a bi-
crystal of elastically anisotropic material, the forces
result exercising on the matrix dislocation near and
parallel to an interface comprehend a supplementary term
due to the interface presence and qualified as the image

force, Fi= - AE/d (Priester and Khalfallah, 1994) where AE
is the elastic interaction energy and d is the distance
between dislocation and gramn boundary.

Head theorem: In the setting of the anisotropic linear
elasticity the calculation of the energy of elastic
interaction has been execute by Head (1953) that takes in
account B the energy of the dislocation in crystal (1) and
E™ the energy of his image in crystal (2).

AE = E® —E" (1)
The Burgers vector is given by:
bige’d = B — /BBy (2)

Barnett and Lothe theorem: The elastic mteraction
energy AE has been given by Barnett and Lothe
{1974) considering E" the dislocation energy in the
infinite crystal (1) and E%? the energy of the same
dislocation at the interface, Fig. 1. The calculation of the
interaction energy AE are performed using the integral
formalism (Kirchner and Lothe, 1987, Condat and
Kirchner, 1987)

AB=[E®-E] (3)
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Fig. 1: Geometric configuration used for the calculation of
the mteraction energy

Table 1: Crystallographic parameters (A), elastic constants (107! dyn
cm™?), anisotropy factor H (107! dyn cm™) and anisotropy ratios

Ac and As

Metal Be Y Zin

a 2.29 3.65 2.66
c 3.58 512 4.95
cf a 1.56 1.57 1.86
Cy 29.2 7.79 16.4
Ciy 2.67 2.92 3.64
Cis 1.40 2.00 5.30
Ca 33.64 7.69 6.35
Cy 16.3 2.43 3.88
Cis 13.3 2.44 6.38
H 6.07 -0.008 -5
A 0.90 1.18 8.00
A, 1.22 0.99 0.59

Table 2: Burgers vector and line orientations of dislocations

Dislocations b t
Screw a [0001] [0001]
Edge a [0001] <11-20>, <1-100>

The 1mage force depends on several parameters
describing the dislocation and gran boundaries
configuration: the disorientation of the bicrystal, the line
orientation of the dislocation t and the Burgers vector b,
the anisotropy of the material characterized by the elastic
constants C;, the factor of anisotropy H, the shear
parameter A, and the compression parameter A. The
distance d between the dislocation and the grain
boundary plane allows to determine the force image
mntensity. According to these parameters the image force
may be attractive repulsive or null.

MATERIALS AND METHODS

Grain boundary configuration: The materials of
hexagonal characterized by  their
crystallographic (a, ¢, ¢/a) (Rarey et al., 1975) and elastic
(Cy, H, A, A)) parameters (Leipfrid and Breuer, 1978),
Table 1.

structure  are

H=2C+CCy 4
Ac=20C,/C-Cy (5)
As = C 0 2C/CH-Cpy (&)

The Burgers vector of dislocations is b = a [0001].
The screw dislocation and the edge dislocations are
given in Table 2.

The grain boundaries which have been considered
are characterized by disorientation axe with simple
indices, R = [10-10] and the angle of disorientation
varying from 0-180°.

RESULTS AND DISCUSSION

Extremes interaction energies: The Table 3 indicates the
values of the extremal interaction energies.

The maximal interaction energy is gotten for the
screw dislocations [0001] in the case of Y, however in the
case of Be and 7Zn its gotten for mixed dislocations near of
screw ones. The mimmal energy mteraction mn the case of
Be is gotten for the edge dislocation.

Disorientations effect: The variation of the maximal and
mimimal mteraction energies according to the
disorientation are represented in the Fig. 2 and 3.

The variation of the maximal and mimmal mteraction
energy as function of disorientation is symmetrical to
907 for the three metals considered.

In the case of Zn the maximal interaction energy is
always positive. It mcreases globally with disorientation
until 13.5 pJ m™" apart for 90°. The minimal interaction
energy is positive for the disorientation varying from
70-120°. The force 1mage 1s repulsive for all dislocations.

For Yttrium, the mteraction energy variation with
the disorientation is very weaker. Tt is always of the order
of 1 pIm™.

The maximal interaction energy in the case of
Be 13 positive for the disorientations lower then 30°,
AE= 0.6 pIl m™. For the disorientation varying from
40-150° the interaction energy is always negative. The
image force 1s attractive for all dislocations.

Anisotropy effect: The variation of the maximal interaction
energy as a function of the anisotropy factor 1s reported
in Table 4.

The maximal repulsion is gotten in the case of Zn for
which H is negative however, the maximal attraction 1s
gotten in the case of Be for wich H is positive. When H is
weak in the case of Y, the interaction i1s also weak. The
interaction energy varlation is inversely correlated with
the anisotropy factor H.
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Table 3: Values of the extremes energy of interaction

Metal AB. (pIm™h) Dislocations tfuvtw] Disorientation angle ©(°) AB . (pIm™) Dislocations t [uvtw] Disorientation angle ©(°)
Zn 13.5 [-48-41] 80 -3.6 [1-217] 30
Be 0.55 [1-107] 20 -11.05 [1-210] 20
Y 0.95 [0001] 60 -0.75 [-36-32] 60
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Fig. 2: Maximal energy of interaction
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Fig. 3: Minimal energy of interaction
Mobility of dislocations: The movement of the dislocation
15 controlled by the image force Fi and the Peierls stress
T, (Hirth and Lothe, 1982) (Table 5).

T, = (2pb/i1-v)) Sin 47 ¢ exp (21 wib) (10)

The maximal stress tp is given by:

T, = (2pb/(1-v)) exp (-27 w/b) (11

Fig. 4: Distance limit in lengths of burgers vector

Table 4: Anisotropy effect on energy of interaction

Metal H Q0 dyn cm™?) AE (pIm™)
Be 6.07 -11.05

Y -0.008 0.95

Zn -5 13.5
Table 5: The maximal constraint of Peierls

B [0001]

Dislocation

Angle (®) 70

Metal Be Y Zn
Tp 15.5 0.85 1.64
n 14.93 2.54 4.66
A 1.49 2.42 4.16
v 0.045 0.24 0.24

The elastic parameters u and v of hexagonal metals
are gotten by meeans of Voigt (Saada and Champier, 1967)

1= 1/30 (7C,-5C,42C, 1 2C,-4C ) (12)
A =1/15 (C,+Cyy+5C, 4+8C,-4C,,) (13)
v = A2(pt A) (14)

The limit distance D for the setting in movement 1s
the intersection between the curve of the force image and
the line of the Peierls stress. This distance 13 a maximal
distance for the mobility of the dislocation Fig. 4.

The hmit distance 1s different from a metal to the
other. The limit distance maximal is equal to 7h, it is
obtained for Zn (H = -3). The mimmal limit distance 1s
equal to 0.5b, it is obtained for Be (H =6.07). The variation
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Fig. 5: Numbers of attracted dislocations

of the limit distance from a metal to the other 1s inversely
correlated with the anisotropy factors H of the metals.

Attractive image force: For disorientation lower than
17 the numbers of attracted dislocations is equal to 50%
for Zn and Y, in the case of Be it is equal to 80% (Fig. 5).

In the case of Be (H = 6.07) the number of attracted
dislocations increases with the disorientation until 100
%. All dislocations are attracted in the interval (30-130°).

In the case of Y (H = -0.008) the number of attracted
dislocations increases until 80% for the disorientation
superior to 30°.

Conversely in the case of Zn (H = -5) the number of
dislocations attracted decrease with disorientation until
0% 1n the mterval (50-1307) all dislocations are repelled.

CONCLUSION

The elastic interaction energy between a dislocation
and a gramn boundary can be positive negative or null.
The mtensity of the interaction 1s the order of the pico
joule by meter. It 15 always very weak compared to the
one gotten for the cubic materials that are of the order
of 100 pJ m™". The elastic interaction energy variation
versus the disorientation angle 1s symmetrical in relation
to 90°. The maximal repulsion, 13.6 pT m™, is gotten for
7Zn (H =-5), the maximal attraction, -11 pTm ™, is gotten for
Be (H = 6.07). It's inversely correlated with the anisotropy
factor H.

The image force can be repulsive, attractive or null.
The proportion of dislocations attracted depends on the
anisotropy factor H of the metal and the angle of
disorientation of the bicrystal.

If H is positive, the number of attracted dislocations

increases with disorientation until 100% for the
disorientations lower than 170°. Tt decreases for superior
disorientation.

If H is negative, the number of attracted
dislocations decreases until 0% for the disorientations
lower than 140°. It increases for superior
disorientation.

If H 15 close to zero the number of attracted
dislocations is always considerable in the interval of
disorientation considered.
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