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A Finite Element Analysis of Corroded Plates
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Abstract: In the several structural applications of plates, thickness in service may not always be considered
constant as, in addition to other sources, a variable thickness profile can result from metal surface losses due
to corrosion. A further analytical step to the finite element analysis of plate has been proposed in this study,
by modeling this arbitrarily varying thickness profile as a 3rd degree polynomial. The plate continuum was
discretized into rows and columns and thickness losses measured randomly along the plate length for the
number of idealized rows and the least square method used to fit a unique curve through the data pomts for
each row. Equivalent element thicknesses were obtained as simple averages of its corresponding boundary
nodal thickness, determined from the polynomial curve. A finite element program incorporating this novel
concept was developed and validated by a comparative analysis of classical results for a uniformly loaded

encastre plate of constant cross section.
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INTRODUCTION

One significant feature of a structural plate is the
dependence of its bending properties on its transverse
dimension, the thickness, which 13 normally very small
compared to the other two sides (Coates ef al., 1987). In
majority of its classification and use, however, plate
thickness 1s usually considered constant.

Plates of uniform thickness find use in several
structural applications especially supporting surface
loads between spans. As wall panels, they transmit load
along their length or in the transverse direction as in
slabs, decks, etc. Plates confine pressure as in pipes,
boilers, reactors, heat exchangers and several other
containment structures. The automobile and aeronautic
industries also depend on the use of plates in the form of
panels, stiffeners, aircraft wings, fuselages, etc.

The response of plates under various forms of
loading and support condition is of great value in
structural design and numerous nvestigators have
studied problems of flexure, buckling and postbuckling
analysis smce Von Karman first developed the
compatibility and equilibrium equation. These attempts
and several motivations at studying the behavior of
loaded plates have led to developing solutions to the
problem of plate flexure. Thus, approximations for the
deflection behavior of isotropic plates with geometries
and boundary conditions have been severally obtained.
Some of the most important results are as described by
Timoshenko and Woinowsky-Krieger (1959). Some exact

solutions have similarly been obtained using Theory of
Elasticity (Timoshenko and Goodier, 1951).

The growing interests for a better understanding of
plate behaviour are enormous. There i1s the need to
develop enhanced methods of calculation and analyses
resulting in smaller moment distributions on plates and
improved factor of safety, so that their durability as well
as mtegrity in service can be better predicted. To tlus
end, plate thickness cannot always be considered
constant m all of its application, especially in the course
of its use m service. Consequently, plate thickness can
vary due to action of loads, as a result of mechanical
wear and tear and the combined effect of environmental
activities in operation. In addition, a deliberate attempt at
a better surface finish in the course of plate fabrication
and handling can result in vanation of plate thickness.

The bending analysis of plate of non-uniform
thickness dates back to the work of Olsson (1934).
Several other studies of stress and deformation of plates
with discontimuous changes of thickness have been
undertaken employing classical and analytical methods
(Fok and Rhodes, 1977; Rushton, 1969; Cul and Dowell,
1983; Raju, 1966, Ttretyak, 1963). Thickness variation
profile has most recently been considered in the
solution of plate stability, where the varation due to
corrosion was analysed (Lakhote et af, 2002) and
modelled by the two-dimensional Fourier infinite series
approach (Roorda et al., 1996) applicable to umaxially
loaded thin rectangular simply supported plate of plane
geometrical configuration.
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In summary, thickness variation and its associated
structural problems 1s real in the overall life cycle of any
plate structure and requiring further investigation, as
this will affect stress distribution and structural integrity
of plates under exploration. The resulting stress
redistribution often leads to overstress in critical areas
and threat of failure and even collapse. Thus, assessment
of available level of safety in existing structures in service
becomes a critical subject (Johnary, 2005).

This study presents, therefore, the description of the
computer approaches adapted from the finite element
method in analyzing the structural responses of a plate of
an arbitrarily varying thickness profile.

THEORETICAL BACKGROUND

The variation of thickness can be lLinear, varying
according to a relation (Tretyak, 1963), or can be of an
unpredictable nature as can be observed on corroded
plate surfaces (Lakhote et al., 2002).

A plate is a continuum which can be modelled as a
plane stress problem described by the bi-harmonic partial
differential equation as
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For a set of boundary conditions and any given load
mtensity g, the solution of (1) yields the distribution of
stress, which are actually bending/twisting moments.

In general terms for an orthotropic plate, the
stress-strain relations from plate bending theory 1s given
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For the consideration of geometrical non-linearity
based on the concept of a varying thickness profile due
largely to surface losses from corrosion, plate flexural
rigidity becomes largely dependent on the value of the
thickness, t, at any point on the plate continuum. This
kind of stochastic variation presents discontinuities
which are difficult to describe analytically. However, an
approximate solution in which the governing differential
equation 1s replaced by a set of algebraic simultaneous
equations, which represent the value of the unknown
variables (displacements, stress, etc) at the discrete points

or nodes and particularly suited for automatic
computation mvolving a number of repetitive steps, can

be used. One such numerical method is the method of
Finite Elements, formulated to take advantage of the
capabilities of a computer program. The Finite Element
method which is an extension of the analysis of ordinary
frames to two and three-dimensional structures such as
plates, shells etc, was pioneered in the aircraft industry for
the accurate analysis of complex airframes has been
extensively developed and published (Zienkiewicz, 1971,
Rockey et al., 1973; Hrennikoff, 1941 ; Clough et al., 1956;
Ray, 1974; Holland, 1974).

In the Fiite Element analysis of problems of a
discrete nature, the structure is considered as an
assemblage of all individual structural elements following
a well defined procedure of establishing local equilibrium
at each ‘node’ or connecting point of the structure.

The key to the method is the general matrix ecuation
relating elemental load to their comresponding nodal
displacements given as

{F7} = [K]{o"% (3)

A partitioned method of matrix summation of the
contributions of all element stiffness matrices results 1n

{F} = [K]{9% 4

The overall stiffness matrix [K] relates the applied
nodal forces to the unknown displacement, upon which
the displacement vector for the entire structure can be
determined for any given load, after consideration of the
given boundary conditions.

COMPUTATIONAL METHODS

In the present study, we adopt all the conventional
idealisation of classical small-deflection, thin-plate theory
and the triangular element, with three corresponding
nodal forces and displacement quantities as defined
(Fig. 1).

The estimation of element stiffness matrix generally
wvolves the definition of a suitable coordinate system
and superimposition of displacement functions as a rigid
body and as a smnply supported element such that
(Zienkiewicz, 1971)

W= Wrb + Wss (5)
Where:

w" =w, L, +w,L, +w,L, (6)

W =N, 0% + N 8% + N_6% o
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Fig. 1: Nodal degrees of freedom

Each N, and N, term representing the individual
shape functions, chosen such that boundary conditions
at the nodes of the simply supported elements are
satisfied. The shape functions are defined as
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Other individual shape functions are similarly
obtamed by changing the subscript in a cyclic order and
the nodal and area coordinates, a,, b, ¢, etcand L, L,, L,
have been, respectively defined (Rockey et al., 1973).

In plane elasticity problems, strains are usually
associated with cuwrvatures and are related to simply

supported nodal displacements as
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[B,?] and [B,¥] involve terms in Nx,, Ny, and Nx,, Ny,
respectively and the [B*] will thus be established by
carrying out the required differentiation of the shape
function as indicated in (12) above.

Stress, strain and nodal displacements are related by
a 6x6 -stiffness matrix for the simply supported element as

- e ol ey 09

By appropriate substitutions, the slopes at any point
on the sumply supported element can be expressed in
terms of the total slopes and lateral displacements at that
point as
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A complete set of slope equation for all nodes is
related to a transformation matrix as
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By wvirtual work principle, the element nodal
displacements and forces in the simply supported case 15
related by a 6x6 —stiffness matrix [K*] as

e} [5)fo] as)

No curvatures are set up during rnigid body
movements and thus elemental force is related to
the comresponding displacement by  appropriate
substitution as
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The required nine degree of freedom stiffness matrix
for a triangular element is obtained as

Ko=) k= ][7] (18)

Consequently, the stress-displacement matrixes are
internal moments obtained as

[H]=[D[B=[T]{&}
MODEL APPLICATION TECHNIQUE

The objective of the analysis 1s the determmation of
the unknown nodal displacement from where element
stresses can be determined using the stress matrix for an
encastre plate of a varying thickness profile. A finite
element solution thus involves calculating the stiffness
matrix for every element in the 1dealized structure and then
assembling the overall structural stiffness matrix, [K] for
the complete structure.

The finmte element algorithm was developed using the
Visual Basic version 6.0 programming lenguage employing
triangular elements throughout (Thekwe, 2006). The
analysis was carried out using input data, which fully
described the 1idealized structure and its loading and
boundary conditions built up mn various subroutines.

Node numbering: The first step in the simulation process
was to choose a suitable coordinate and node numbering
system for the idealization. The convention of numbering
the nodes of each element in a counter-clockwise manner
was adopted. The generation of element nodal
comnectivity (mesh) proceeded automatically by use of
suitable declarations (program instructions). Furthermore,
each node was uniquely defined with respect to a
reference coordinate (x, y) at (0, 0).

In order to keep the ‘band width® of the overall
stiffness matrix as small as possible (1. e. to achieve a
narrow, dense, diagonal band), the nodes were numbered
such that the maximum difference between node numbers
was kept as small as possible. Node numbers start from
zero at the reference coordinate to n along the y-axis and
continue from n + 1 at the base of the next discretized
column or vice versa.

Input data: The source code provided mput data
specifying the geometry of the idealized structure (length,
width and thickness), its material properties and loading

and support conditions. Controls such as total number of
elements, n, number of rows, n, or columns n,, yielding
automatically the total number of nodes corresponding to
n elements, were imputed to enable the main routine
ascertain how much storage will be required for each
individual analysis. An interactive interface containing
the mput information for the analysis i1s presented in
Appendix 1.

In order to successtully develop an algorithm for this
research from the established Finite Element derivation
procedure (Zienkiewicz, 1971) the continuum was split
into rows and columns, with the grid like mtersections
being the nodal peints. As such, the nodes are
considered as being arranged either longitudinally along
the plate length or transversely along its width in line with
the pattern established for node munbering,.

Of special interest is the arbitrary natural mode of
geometric variation as a result of thickness loses due to
corrosion. The thickness of corroded sections, t, were
approximately taken as factors of the origmal plate
thickness, t measured along corresponding rows on the
discretized plate continuum. As opposed to the general
case of constant cross section, where thickness is
factored from the overall structural stiffness matrix, [K],
the thickness factor here is built into the individual
element stiffness matrix [K°] before the assemblage is
carried out,

The novel concept considered was to discretize the
plate continuum, idealized as rows and columns and
physically taking thickness gauging in a random manner
along the row length, which as 1s often encountered in
engineering measurements, are susceptible to errors. The
stochastic nature of corroded thickness variation was
then approximated to a polynomial of degree three and the
method of least squares (Uhunmwangho, 1997) used to fit
a umque curve through the given data points, such that
nodal thicknesses could be determined along the length,
on a row by row or along the width on a column by
column basis.

To fit an nth degree polynomial through a given set
of data points (x,,y,), given that

Vo=@, X +aX +8,X +a,X +. +ax" (20)
Such that
=1, FX,) =t Jx, D=t _,fix)=t,

along the longitudinal or transverse axes.
The sum of the squares of the error or deviation e, 1s
given by
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Algebraically rearranging the above will give in matrix form
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The above matrix equation is general from which a
unique curve for each row or column 1s fitted and nodal
thicknesses along the longitudinal or transverse axis,
respectively determined. As the fimite element theory 1s
defined for constant cross section, an equvalent
thickness for each triangular element was approximated as
a simple average of its boundary nodal thicknesses as

3
t.= lztnndm (24)

Similarly, to determine the consistent load vector,
which i1s the sum of the contributions of the various
loading considered (Rao, 1989; Pepper and Henrich, 1992),
the load was first evaluated for a simply supported case
{F**% and then for the element {K°} by employing the
transformation matrix [T].

Element stiffness: Handling of the strain matrix whose
second order partial derivative involves terms n x and y
variables were the main difficulty encountered at this
point. Numerical differentiation could not be employed as
this is usually applied at specific points to give definite
values of the derivatives at those points. Algebraic
expressions (Tbekwe, 2006) in terms of the nodal
coordinates for these derivatives were generated from
Eq. 11 in the form a + bx +cy and directly employed
accordingly for each term of the [B*] matrix to obtain the
product [B*][D][B*] in the same algebraic form as above.

A simple algorithm for normal analytical integration
was employed to handle the double matrix mtegration of
the above product. The mtegration was carried out for the
different variables x and y in turns within the element
boundaries to obtain the [K*] matrix. The required 9x9
element stiffness [K°] was then obtamed by the matrix
multiplication of the transformation matrix [T] together
with its transpose.

Assembly of the overall structural stiffness: The matrix
equations that describe the individual Fmite Elements
are essential, but not in themselves sufficient to solve the

> e [ 2]
>l a >otx
ZX;HZ a; Ztixiz
Sxila, | = 2] (23)
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problem. Thus, the overall Structural Stiffness Matrix,
which is made up of the sums of all the contributions of
all individual Element Stiffness Matrices [K°], was
determined using a partitioning method of matrix
addition. Due attention was paid and special declarations
made to ensure that the forces and displacements
calculated for all individual elements were inserted into
the appropriate locations to which the actual overall
stiffness term relate.

The overall stiffness matrix, which is symmetrical of
size nxn gives an indication of the total mumber of
simultaneous algebraic equations to be solved to obtain
the required solution. In this case of 3-degrees of freedom
per node, the number of equations will be 3 times the
mumber of node, resulting from the total number of
element ch.

Application of boundary conditions: Once the overall
structural stiffness matrix had been established, the main
task became that of determimng the corresponding nodal
displacements for every defined node making up the
contimmum. A simplifying principle of eliminating the
effect of the of the prescribed =zero
displacements by deleting their corresponding rows and

influence

columns, was employed. The reduced matrix was then
inverted. Finally, the product of the inverse stiffness
matrix and the consistent load vector for the entire
plate was solved using the Gauss elimination iterative
method (Ross, 1982) to obtain the solution for nodal
displacements.

Stress-displacement solution: The required 3x1 element
stresses M., M, and M, was obtained by premultiplying
each of the 9x1 element nodal displacement vector by the
transformation matrix according to Eq. 18.

Plotting: In line with the pattern established for node
numbering, results of nodal parameters obtained were
imported into an excel spreadsheet and their graphical
representation generated using the Microsoft Excel chart
wizard.
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RESULTS AND DISCUSSION

A validation of the finite element software by a
comparative analysis of results with those obtamned
experimentally or classically from other analytical
formulations was carried out.

Meximum deflection for a 5m length, 0.01m thickness
encastre plate of aspect ratio (b/a) 1.1, umiformly loaded
by a SKN/m load from the Navier solution is given as

~ 0.00150q,a4
max D

And obtained as 2.457m. As a measure of validity, the
optimal solution (using 400 elements) from the finite
element software” for the same aspect ratio (5.0 m 5.0 mx
0.0lm plate) under the same load and boundary
conditions gave a maximum of 2.532 m representing an
error margin of 1.031% from the classical result.

The analysis as is usual for plate flexure also shows
results of angular deflection ((6,. 0, and reactions
(M,. M, M_)), representing both bending and twisting
moments. Further analysis extends to the simulation of a
plate whose thickness profile is varying in an unpredictive
manner. This could possibly have been as a result of an
mtentional variation of thickness to meet specific design
considerations, or from natural wear and tear including
cavitations of submerged structures and/or by an
unintentional  attack tlrough reactions with the
environment leading to metal surface deterioration with
time.

CONCLUSION

Following the analysis and results obtained, it can
thus be stated that the assumption of uniform structural
responses common in  homogeneous plates 1s
theoretically no longer valid due to metal surface losses
which have been modelled to behave as a polynomial of
degree three.

As a general consequence of this, progressive loss of
thickness 13 to be monitored by regular thickness gauging
and corroded members refitted at the earliest possible time
to reduce the risk of failure.

The assumptions made in the development of this
program for plate of a varying thickness profile,
considered the plate to be only of a rectangular
configuration and built-in on all sides. This regrettably is
one major limitation of the software.

Furthermore, it cannot be claimed that the developed
visual basic program is as sophisticated as already
existing industrial finite software

element such as

STAAD, NASTRAND etc. However, an incorporation
of the concept of variable thickness proposed in this
study will be particularly useful in large scale fimte
element programming, resultng in improved versatility
of these tools in structural analysis of plates.

Notation:

ab = Plate dimension

X, ¥ = Nodal coordinates

a;, by, ¢,

a,b,, ¢,

a,, b, ¢, Relation between nodal coordinates

L.L,L; = Areacoordinates

AL A, A, = Areaof elemental sections

A = Total element area

M. M, M, = Moment per unit length

q = Load distribution

E = Elastic tensile modulus

v = Poisson’s ratio

D, [D] = Plate flexural rigidity and rigidity matrix,
respectively

ty t, t, = Original, measuwred and equivalent
element plate thucknesses, respectively

w = Deflection

=W = Rigid body and simply supported

components of deflection, respectively

0.0, = Rotations about x and y axes

e = Curvature (strain)

N, N, = Shape functions

{8°1, {0} = FElement and structural displacement
vectors, respectively

{F*% {Ft = Element and structural force vectors,
respectively

[K*] = Stiffness matrix for simply supported
component

[K°.[K] = FElement and overall structural stiffness
matrices, respectively

[T] = Transformation matrix

[B*] = Matnx relating element strain to element
nodal displacements

[H] = Stress-displacement matrix
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