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Abstract: Elongated reservoirs, resulting maimly from fluvial deposition or faulting, are often found in the three
Basins of the Magdalena River Valley in Colombia and several other places around the globe. Since most of
these reservoirs are due to parallel stratigraphic or structural features, horizontal permeability anisotropy may
occur. Normally, a single horizontal well test 1s meant to be enough for permeability anmisotropy determination.
It 1s not the same situation for vertical wells where mnterference testing involves at least three active wells.
However, in channel-type reservoirs when its width is known from estructural maps or seismic data, the
advantage of having, first, radial flow regime which involves two directional permeability and then, linear flow
regime related to permeability in one direction, the horizontal anisotropy can be also determmed from a single
well pressure test. In this study, a detailed analysis of pressure derivative behavior for a vertical well m areally
anisotropic long and narrow reservoirs is presented for the case of constant rate production. For this case, the
radial flow is distorted into an elliptical flow profile and its shape is determined by the maximum and minimum
principle permeabilities. The elliptical nature of the system leads to the determmation of a bi-dimensional
permeability while the linear flow allows for the estimation of permeability in a single direction. The proposed
interpretation method uses the concept of the TDS technicue, which relies on characteristic points and straight
lines corresponding to flow regimes found on the loglog plot of pressure and pressure derivative to caculate
various reservolr parameters directlty, thus avoiding the use of type-curve matching or regression analysis.
The techmique was successfully verified by interpreting synthetic pressure tests for o1l reservoirs.

Key words: Areal anisotropy, radial flow, parabolic flow, dual linear flow, single linear flow, maximum and

minimum principal permeabilities

INTRODUCTION

In o1l and gas reservoirs, it s generally accepted that
vertical and horizontal permeabiliies are different.
Commonly, the fact that horizontal permeability varies
from one direction to another is ignored. This horizontal
anisotropy  generally deposition
enviromment, sedimentary processes or tectorusm. This
last one may cause oriented fractures so that permeability
can dominate along one direction. Permeability measured
along the bedding plane can be several times higher than
the one measured normal to the stratum. This vertical/
horizontal amisotropy is often considered in partially
completed wells. Tt is costumary to neglect horizontal
permeability in transient pressure analysis of vertical
wells, mainly, because its effect carmot be identified n
the pressure or pressure derivative curves. As a result,
interference testing involving at least three active wells is
recomimended. Therefore, determination of the directional

results from the

permeabilities from a single well test analysis conducted
ina vertical well has been a challenge issue to the field of
well test interpretation for several decades. Meanwhile, a
single pressure test conducted in a horizontal may lead to
the estimation of reservoir permeability amsotropy due
to the fact of finding a variety of flow regimes. This
advantage can be also applied to vertical wells; for
instance, the presence of partial completation or partial
penetration in a vertical well pressure tests can be used to
estimate vertical permeability. Long and narrow reservoirs
formed by either faulting or fluvial deposition are not the
exception to the rule as long as reservorr width 1s known
and lear flow develops.

Characterization of channel reservoirs using type
curves of pressure and pressure derivative began in
earnest in the seventies (Tiab, 1975, 1976, 1979). Recently
several researchers have revisited these systems,
particularly Escobar et al. (2005), Nutalkki and Mattar
(1982) and Wong et al (1986). Escobar et al (2007)
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presented a set of equations and a methodology to
characterize elongated isotropic reservoirs from well test
analysis by means of the TDS techmque, which was
developed by Tiab (1993, 1995). By combmation of
the TDS technique, conventional analysis and non-
(2007) presented a
reservolr amsotropy  in

linear regression, Sui et al
methodology  to
elongated reservoirs.

Reservoirs width may be known from either
geological or seismic data, even though anisotropy may
affect this last measurement. As long as the linear flow
regime develops for cases of either long duration test,
high reservoir permeability, or small reservoirs, horizontal
anisotropy can be obtained from the linear flow regime.
This 18 very attractive for small channels in which drilling
other wells, for obvious reasons, 1s not feasible; then,
interference testing may never take place for anisotropy
determination. Here, a methodology is presented to
estimate horizontal reservorr amsotropy in channel-type
reservoirs based upon the TDS technique and using only
the pressure and pressure derivative plot. The proposed
methodology is verified with synthetic examples. For
further mformation on the TDS, Tiab’s Direct Synthesis,
technique the reader 1s mvited to refer to Tiab (1993,
1995), Tiab et al. (1999) and Escobar et al. (2007).

estimate

MATHEMATICAL TREATMENT

Basic equations: Let us define dimensional quantities.
Starting with dimensional time:

0.0002637kt
= M
ome,r,
_ 0.0002637kt @
DA orc, A
t 0.0002637k,t
tDL = DZ = 2 = (3)
Wy e, Yy

During the radial flow regime, the permeability and
anisotropy are defined by:

k=K 4

A== )]

Dimensionless reservoir width and well position are
(Fig. 1:

W, =& (6a)
rW

X, =20 (6b)
XE
2b

Y, =—2 (6c)
YE

Dimensionless pressure and pressure derivative
during radial flow regime or late behavior:

P, :LAP (7
141.2quB

£ 9B, = (s ppr) (8)
141.2quB

During intermediate behavior when linear flow
dominates the permeability will be taken in the x direction.
Therefore:

o kb ©)
141.2quB
k.
»*Py = ——E——(t* AP (10)
141.2quB

Governing equations: Many wells have been observed to
display long-term linear flow. Linear flow can be detected
by a 's-slope lne in a log-log plot of the pressure
denivative. Linear flow regime 1s also observed when the
well 1s located at one of the reservoir extremes as depicted
i Fig. 1 and 2. This is governed by the following constant
rate equation:
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Fig. 2. Pressure derivative behavior for a well (a) both extreme boundaries are close, (b) close near boundary and open

far boundary

2t
P, = 2mfly, +5, = “‘/_D+SL (11)

WD

As long as the well is located far away from one of
the extreme boundaries, dual-linear flow 13 developed
before the linear flow. In this case, the govermng equation
is:

2 T[tD N SDL (12)

D

P, =2nt, +Sp =

The subscripts I and DL in Eq. 11 and 12 stand for
linear and dual-linear flow regimes. Pressure derivatives
for Eq. 11 and 12 are, respectively:

mfty (13)

t.*P.D) =
(ty *Fp ') W,
7t
{tp ™ Pyl = WD (14)

D

As observed in Fig. 3, parabolic flow, characterized
by a slope of -4 of pressure derivative curve, develops
as a result of the simultaneous effect of an open boundary
near the well and the expected linear flow regime along the
far lateral side of the reservoir (Escobar ef al., 2005). The
pressure and pressure derivative governing equations for
this flow regime are, respectively (Escobar et al., 2007):

P, = (W )(X, )2 {i‘ﬁj % rs,, (15)

E

2
v (e 09

E

Dual-linear and linear flows take place when the well
is off-centered with respect the reservoir’s extreme lateral
sides. The inflection point during the transition period
from dual-linear to linear flows is governed by the
following relationship according to Escobar et al. (2007):

(tD*PD')F:"‘.I:-"_‘\IE’.‘T:DD5 (17)
2W,
2
o WX (X (18)
D \/; Y,

Characteristic lines and points: Tiab (1993) obtained a
practical equation to estimate reservoir permeability from
the radial flow regime when the dimensionless pressure
derivative is one half:

=  70.6quB
k=240 19
h(t*AP"), a2

As shown in Fig. 4, the intersection point between
the radial-flow line and the linear-flow line, tg;;, 1s umque.
At this point of intersection, the dimensionless pressure
derivative takes a value of one half when the well is
centered regarding the reservoir’s parallel boundaries.
Same situation applies to dual-linear flow. Based upon
this observation Eq. 13 and 14 become:
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Fig. 3: Characteristic points of the parabolic flow
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Fig. 4: Pseudosteady-state line intersection with either linear, dual-linear or radial flow lines
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2D
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Figure 3 describes the transient pressure behavior
for a well in a channel when areal anisotropy is
considered The begimming of lmear flow and
consequently ending of radial flow, 13 a function of the
permeability in the y direction. Replacing the
dimensionless parameters, Eq. 1 and 6¢ and solving for k,

yields:

 301.77¢uc, Y,

k, (22)
Lap,
2
ky _ 9006¢MCtYE (23)
tre,

Both linear flow and dual linear flow are developed
along the x direction. Therefore, substitution of Eq. 1, 6
and 8 mto Eq. 22 and 23 provides solutions for k,;

(24)

2
[ 72034gB | Atu
LYh(t*APY), | de,
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2
= 4.064qB Aty 1 (25)
L Y;h(t* AP')DL e,

When the pressure derivative value is read at the
time, At =1 hr, extrapolated if necessary, Eq. 24 and 25 will
then become:

2
_ 7.20349B o (26)
* YEh(t*/_\.P')Ll de,
2
K - 4.064qB B 27
Y ht*APT) ] de,

As for the case of parabolic flow, replacing the
dimensionless parameters in Eg. 16 will result in a
relationship to obtain either permeability, reservoir width
or well location, as preferred:

kY,
XE—17390{

2
b4

quB bre, v (2%)
h(t*AP)__ || t,

B

Where, (t*AP),; 1s the pressure derivative during
parabolic flow read at any convenient time, tgg.

Intersection of dual-linear, linear and radial lines with
pseudosteady-state line: For long producing times mn a
closed reservoir the pressure derivative is characterized
by a unit-slope line which 1s given by:

(to*Py'), = 2m %ty (29)

As expressed by Tiab (1993) the time of intersection
of the pseudosteady-state line with the radial flow line
(tap) can be used to calculate the drainage area:

A e (30)
301 77¢ue,

Also, the times of intersection of the pseudosteady-
state line with the linear and dual-linear pressure
derivative lines (Fig. 4) can also be used to estimate the

Teservolr area.
2
A= kxtDLHYE (3] )
301.77dpc,
2
048.047 pyic,

Equation 31 and 32 are obtained by combining
Eq. 13, 14 and 29 and substituting for the dimensionless
terms.

Intersection between the parabolic-flow line with either
dual-linear or radial-flow lines: Parabolic flow only takes
place when the well 13 near the constant pressure
boundary. Equating Eq. 16 with 13 will result n Eq. 33
after replacing the dimensionless quantities and solving
explicitely for by

1 kxtDLPB, (33

b =——
65.41Y duc,

Equating Eq. 16 to 05 and plugging the
dimensionless parameters yields:
b, = [ Y. j Katers, (34)
* 246.32 )Y due,

Intersection between the constant-pressure line with
either dual-linear, radial or parabolic lines: When the
two extreme sides of a rectangular reservoir are constant-
pressure boundaries Escobar et al. (2007) showed (Fig. 3)
that a straight line of slope = -1 represents the parabolic
flow regime. The govermng equation for this line 1s:

NN G ATVRG & (35)
tn* B, [ﬂz J(XD ){Yj(tb)

E

For the mixed boundary case, the governing equation is:

*p ot — lé 15 ﬁj -1 (36)
o)

E

Equating Eq. 35 and 36 with Eq. 14 and the
dimensionless value of the pressure derivative during the
infinite-acting  period, (t,*P,’) = 0.5, the followmng
relationships are obtained once the respective
dimensionless quantities are replaced:

Intersection of the first constant pressure line

(slope=-1) and the dual-linear flow line:

3
53 _[ 1 J kxtSSlDL, i (37)
£ 1.426 % 1¢° duc, bi

Intersection of the first comstant pressure line
(slope=-1) line and the radial flow line:
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2
5 _( 1 ] kxtsis, Lé (38)
=L 472x10° )L due, b’

Intersection of the first constant pressure line
(slope=-1) and parabolic lines:

3= 1 kxtSSIPB) bx (39)
EO7790 oue,

The subscript S8, stands for the first straight line (of
slope=-1) observed.

Intersection of the second constant pressure line
(slope=-1) and dual-linear lines:

3
= 1 | 1 (40)
PoL1.42x10° )1 ope, bl

Intersection of the second constant pressure line
(slope=-1) and radial lines:

2
<3 = [ 1 J Kotogn, LEZ (41
=oL466x107 ) duc, b}

Intersection of the second constant pressure line
(slope=-1) and parabolic lines:

< = 1 kxtsszpsl bx (42)
PoO76841 oduc,

Suffix SS2 stands for the second -l-slope line
observed.

The inflection pomnt between the transition of the
linear flow periods is useful for estumation of the well
position, b,. Combining Eq. 17, 18, 1 and 10 and solving
for the well position, yields:

* 13581352, quB

b | St (44)
* A 5448 2¢uc,
Maximum points

Well near the constant pressure boundary: As seen in
Fig. 3, at later times, the pressure derivative curve
displays two maximum points when the reservoir has

1 {YEth(t *Ap')F}2 43)

mixed boundaries and the well is near the open one. The
first maximum takes place when dual-linear flow ends and
the parabolic flow follows. The second maximum pomt 1s
formed once the parabolic line ends and the no-flow
boundary has been reached by the transient wave. The
constant-pressure effect still dominates the test. When
both extreme sides of the reservoirs are open to flow the
pressure derivative behaves m a similar way as for the
mixed boundary case. However, no second maximum point
is observed. Equations of the maximum points are used to
estimate reservolr area and well location.

The first maximum point takes places when a change
from dual-linear to parabolic flow regime is attained. The
govermng equation for this maximum point 1s given by:

. 27
(" Py = gWDt%; (43)
X, 2[ 3 (46)
Y. 3\W X)) ®

XE_{J;J@D *By )z “47)

v, |x,

E

Figure 3 also displays the second maximum point
which occurs at the end of the parabolic-flow line and the
start of steady-state line. The equation corresponding to
this maximum is:

(tD *PD ')XZ :g(){é)t%; (48)
)
e ®
E )
XE—{ Ji J(tD *p];)xz (50)
Y, |\ 2ZX,

Substituting the dimensionless quantities into Eq. 45
through 50 and solving for either well position, b, or
reservoir length, X, respectively, yields:

b, _[L} {ﬁ} (51
58.8 opC,

b KDY (AP, (52)
" 159327quB
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X, = 637.3[13}2{1%”3}(1} (53)
v, L kh L itxapy

B LC2S (54)
3024 duc,

E

Well near the no-flow boundary: When an elongated
reservolr has mixed boundaries and the well 1s near the
no-flow boundary, the pressure derivative displays a
maximum point once the constant pressure boundary 1s
felt as shown in Fig. 1. The governing equation for this
maximum point is (Escobar et al., 2007):

X m7( 1 s (55)
Y, 4 lw, |

]

Substituting Eq. 1 and 6 mto 55 and solving for the
reservoir length, X, gives:

05
_ 1 Kk, by (56)
4424\ dpe,

E

Skin factors: The equation to estimate the mechanical
skin factor from the radial flow regime was presented by

Tiab (1995):
—m[ ktfz } 7.43 (57)
¢“‘Ctrw

s =05 APk
(t*AP",

The skin factor caused by the convergence from

radial flow into linear flow is determined by dividing the

dimensionless pressure equation by the dimensionless
pressure derivative equation. The same procedure is
performed for the skin factor due to the convergence from
either lmeal to dual-linear or lineal to radial flow and from
parabolic to dual linear flow. After replacing the
dimensionless quantities in these results and solving for
the skin factor we obtain:

(t*AP) " ]34.743Y, Y duc,

_ [ APDL o 2} 1 kxt DL (39
DL

[ I—
Tt AP 19.601Y, Y duc,

o o AP, 123.16b% | [ oue, (60)
ol trAPY,, Y, K.t

Where, AP,, (t*AP),, APy, (t*AP ), APp, and (t*AP),
are the pressure and pressure derivative values read on
the linear, dual linear and parabolic flow regimes during
any convenient time, t, t and tg, respectively. The total
skin factor 1s the summation of the limear, dual-linear and
mechanical skin factors.

B, =8, T8 5y (61)
S, =8, +8, +8; (62)
Reservoir anisotropy: So far, we have assumed that

k=.k k

=y

therefore, x and y must be the directions of horizontal
principal permeability and kyy,., = max (k,, k), Ky = min
(k. k). However, if

k= fick,

we have to find 6, k., and k... Ayestaran et al. (1989)
attempted to combine seismic data and transient pressure
data to quantify the large-scale anisotropic permeabilities
(Fig. 5). For elongated reservoirs, as long as the reservoir
width, Y, could be determined from seismic data, k, and
k, can also be determined by:

(63a)

(63b)

When the principal permeability directions are not
aligned with the boundary directions, Her-Yuan and
Lawrance (2000) presented the following expression to
find the angle (6 and maximum and minimum
permeability as suggested by Sui ef al. (2007):

2
_L: cos“ 0 N sen e (64)

1633



J. Eng. Applied Sci., 2 (11): 1627-1639, 2007

1E+03
LEH21
A
] [10.0625
* 0.125
1 BH1 025
3 0.5
- 1
2
4
LE+00] = 8
16
/4 |32
1.E-01 T
1.E+04 1.E+H05 1.EH6 1.E+07 1.LE+H08 1.E+09 1.E+10
i

Fig. 5: Pressure and pressure derivative behaviour for a well in a long amsotropic reservolr

Based upon Fig. 6, the following relationship exist
between the different angles:

6, =B -a (66)
According to Eq. 65, 64 is reformulated as:

_ cosz(Blfcc)_s_senz(Blfcc) (67)
k

max min

?T‘I| —

Where, k is the permeability in some specific direction
and 6 is the counterclockwise angle with respect to k.
For 1sotropic reservoir, k.= k. = k.
If

k= fkk,

we can estimate 8, k. and I by solving the following
system based upon Fig. 7:

1 cos’ (B —P) N sen’(0—B)

k, k.. k..

1 sin*(f+m/2) N cos (B+m/2)

k, K, Ko (68)
k= Ky oK i

Ko tan(6—B)

k tan &

Sui et al. (2007) suggested that for cases when the
well 15 off-centered regarding the reservourr’s closest

k

Fig. 6: Permeability configuration, after Her-Yuan and
Lawrence (2003)

Fig. 7: Well configuration after Sui et al. (2007)

parallel boundaries, k, can be determined with Eq. 24
and/or 25, while k, is obtained from the following
reformulation of Bendekim et al. (2002):

_ 948b, duc, (69)

k 2
t, cos P

¥
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The degree of anisotropy can be estimated from:

A=k, 'k, (70)

n

STEP-BY-STEP PROCEDURE

The following procedure applies to rectangular
reservoirs where the well is located near the closed
boundary and the far boundary is either open or closed to
flow. The test lasts long enough so that radial, dual-linear,
linear and either pseudosteady-state or steady-state flow
regimes are well defined.

Step 1: Plot AP and t*AP’ vs. time on a log-log plot.

Step 2: Draw the infimite acting behavior, dual-linear,
linear flow and the pseudosteady-state lines. Read the
value of (t*AP"),. Choose any convenient time during
radial flow regime, t, and read the corresponding (AP),
value.

Step 3: Calculate k using Eq. 19 and mechanical skin
factor, s, from Eq. 57.

Step 4: If the well 1s suspected to be centered regarding
the reservoir’s closest boundaries, read the intersection
of the radial line with the dual linear, t; 5, and linear lines,
tig, 1f given the case. Knowing the true reservorr width
from seismic data estimate k, by using Eq. 22 (and 23 if
linear flow is present). If the well 1s off-centered, then read
tge estimate k, from Eq. 69.

Step 5: Find k, from Eq. 41f

otherwise skip this step.

Step 6: Choose any convenient time on the dual-linear
and linear flow lines and readt,, (t*AP"),., AP, and
tL, (t*AP"),, AP, respectively. Recalculate k, with Eq. 24
and 25, respectively, if given the case. If desired an
average value of k, may be estimated. If it 15 suspected

that
k= Jkk
solve the system of Eq. 68 and find 6, k,,, and k.,

Step 7: Estimate the geometric skin factors, s, and s,
with Eq. 58 and 59.

Step 8: If only dual linear is seen, we assume that the well
15 centered with respect to the reservow’s lateral
boundaries, then, b, = 0.5X;. Otherwise, for a closed
system, read the inflection point tg, (t*AP");, between the
transition of dual linear and linear flows and estimate well
position, bx, from Eq. 43 and 44.

Step 9: Read the intersection time between the
pseudosteady-state and radial, dual-linear and linear lines
tams Toom and ty o, Tespectively. Calculate the reservoir area
using Eq. 30 through 32, respectively. Estumate reservoir
length, X, by A/Yg.

Step 10: Well 1s far from the constant pressure boundary.
Once the linear flow line vanishes and the effect of the
flow boundary becomes dominant, a maximum point on
the pressure derivative is observed (Fig. 2). Read the
coordinates of this pomt: tg, (t*AP )y, and find reservoir
length, X; with Eq. 56.

Step 11: Well 15 near the constant-pressure boundary.
Once the dual linear flow line vanishes and the effect of
the flow boundary becomes dominant, the parabolic flow
takes place and a maximum point on the pressure
derivative is observed (Fig. 3). Read the coordinates of
this meximum point: ty,, (t*AP ), and find well position,
b, with Eq. 51 and 52.

Step 12: Select any convenient time, tg, on the parabolic
flow line and read (t*AP")., and AP;;. Calculate b, with
Eq. 28. Either Y; or k, can be verified.

Step 13: Read the intersection time of the parabolic flow
with both dual linear and radial flow lines: tgpp; and tpgg.
Find the distance from the well to the nearest boundary,
b,, using Eq. 33 and 34. Also estimate the parabolic skin
factor, s, using Eq. 60. Notice that sometimes parabolic
flow may not be well developed.

Step 14: Find the total skin factor, s, with either Eq. 61 or
62.

Step 15: Well is close to constant-pressure boundary.
Refer to Fig. 3. Read the coordinates of the second
maximum point: ty, and (t*AP’)y, and calculate the
reservoir length, X, using Eq. 53 and 54. Tf this maximum
point is not clearly observed, it 1s recommended to
estimate Xy using FEg 40, 41 and/or 42 using the
intersection of the -1-slope line with the dual-linear flow,
radial flow and parabolic flow lines: tggps and tegr,,;. Read
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the intersection point of the dual linear line with the -1-
slope line, tyyn,, and find X; with Eq. 40. Also, read the
mtersection pomt of the radial with the straight line of

The calculation results are presented below following
the step-by-step procedure:

slope=-1, tym and find X; with Eq. 41. Estimate drainage Step Parameter Equation  Value Average
area from: A= X, * Y, 3 Kk md 19 1414
3 Sy 57 0.56
_ _ 4 k,, md 22 501.4
Step 16: Well 13 off-centered and both extreme boundaries 5 k, md 4 3080.5
are constant-pressure lines. Read the intersection point of ¢ ky, md 24 37815 3881
. X _ S 7 . 59 30.77
the st.nagth line of slope =-1 (whlch is observedonly aftt.ar 8 b, 0.5%: 16679 From step ©
reaching the open boundary) dual-linear and the parabolic 9 A, f2 30 9398903.96
flow lines: tyyp and typ; and estimate the reservoir ¢ A, ft? 3 9271889.64 9335306.8
length, X, using Eq. 39 and 40. When the dual linear flow ?0_13 Ef;fot apply A 93334
1s not present (for small X;/Y; ratios) X; can be estimated, 14 5 61 31.33
using Eq. 38, from the intersection of the straight line of ~ 15-16 Do not apply
slope=-1 and the radial flow line ty,;. Also, read the
intersection point of the parabolic line with the straight ~ Table L: Reservoir, well and f;l“‘d parameters for lexamples 1
. _ . . . Example 1 Example 2 Example 3
hne. of slope=-1 , tssm‘Bi aI.ld find ECE with Eq. 39. Estimate ——— Value
dramnage area by multiplymg X; * Y. 4 (BFD) 300 300 500
h (ft) 100 100 30
FXAMPLES ¢, (psih 2109 2x10° 1107
I, () 0.5 0.5 0.33
b (96) 20 20 20
Example 1: A synthetic test was run with the information B, (bbl/STB) 12 12 11
of Table 1. The pressure and pressure derivative plot is X (P 2 2 14
. . . . .. Y () 1000 1000 300
given in Fig. 8 From there, the following characteristic X, () 10000 10000
points were read: b, (f) 5000 2000 530
by ) 100
B B . - .k (md) 4000 500
t,=018h AP, =5.275ps1 (t*AP”). = 0.36 ps1 K, (md) 500 1000
tp.=0.9h AP, =592 psi (t*AP ), =0532psi A 10
tpoy = 0.4815h s =5348h tze = 1.605h S 0 0
1001
-
Ll
g, 107 i L
e AP, =5.92 psi _ ........l.
v |
~
8
-}
< Ny T = 5348 h
[ *AP),,, = 0.53 psi |
(AP}, = 0.36 psi
4 t= 16051
T.=0482h
| 1,=0.18h | Ty, = 0.9 psi
0.1 T T T 1
0.01 0.1 1 10 100
Time (h)

Fig. 8: Pressure and pressure derivative for example 1
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Fig. 9: Pressure and pressure derivative for example 2

Example 2: Another simulated example was run with the
mformation of Table 1. The pressure and pressure
derivative plot is shown in Fig. 9. The characteristic
points given below were read from Fig. 9.

t =003h AP, =462psi  (t*AP’),=03601 psi
t,,=1.01h AP, =7.125psi (t*AP"), =1.49 psi
t,=63.715h AP, =33.804 psi (t*AP"), = 20.047

psitroy = 0.0603h t, = 0.0183h  ty, = 44.806h
tn=147421h  tn=1.644h  t,=31.933h
(t*AP™)p = 11.94 psi

The calculation results are summarized below:

Step Pararneter Equation Value Average
3 E.md 19 1411.66

3 S 57 0

4 ky, md 22 4003.6

4 k,, md 23 3937.05 3988.3
5 k,, md 4 499.7

6 k,, md 24 486.2

6 k,, md 25 533.09 506.33
7 Spp 59 3.59

7 S 58 -1.81

8 b,, ft 44 1926.1

9 A2 30 9612568.7

9 A, 12 31 9693985.8

9 A, ft? 32 9920565.6 9742373.4
9 X, It AlYy 9742.4

10-13 Do not apply

14 8 61 1.78

15-16 Do not apply

Example 3: The pressure and pressure derivative data in
Fig. 10 were presented by Sui et al. (2007) for an off-

entered well. Other relevant data are given in Table 1.
The characteristic points given below were read from
Fig. 10.

t,=0.042h t,=0.072h AP, =294 psi
(t*AP"), = 2.6 ps1 ty =035h AP, =35ps1
(t*AP" ), =4.05psi  t,;=1077h AP, = 50.03 psi
(t*AP" ) =2.49psi  tgep, = 9h torsi= 1.1 H

The calculation results are summarized below:

Step Parameter Equation  Value Average

3 i .md 19 697

3 S 57 0.35

4 k,, md 69 368.7/cos’ 3

5 Skipped

6 k., md 24 921.3

6 Koy md 2130 Application of Eq.
68 is given below

6 Kin, md 228

6 0, degrees 22

[ [, degrees 68

4 ky, md 2627.4

7 SoL 59 121.2

7 Spp 60 13.98

8 Does not apply

9 Does not apply

10 Does not apply

11 b, ft 51 308.5

11 b, ft 52 354.7

12 b, ft 28 302.96

13 b, ft 33 290.9

13 b, ft 34 257.5 3024

13 Srp 60 13.98

14 5 62 14.33

14-16 Do not apply
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Fig. 10: Pressure and pressure derivative for example 3

cos’ P B cos’ (0—B) . sen’(0-B)
3687  k__ k..

1 _sinz(ei n/2)+cosz(9in/2)
9213 k. k.
697 = kaakamm
kmm — taIl(e_ B)
k,. tan &

Up to step 6, Sui et al. (2007) reported values with

good agreement to the values estimated here. Using the
TDS technique, the estimated average well position along
the x-direction b, is 302.5 ft.

CONCLUSION

Long and narrow reservoirs formed by either faulting
or fluvial deposition are common in the three Basins
of the Magdalena River Valley in Colombia in
Columbia and worldwide.

Several flow regimes may develop in these systems:
Linear, dual-linear, parabolic, constant-pressure line,
radial and pseudosteady state.

Analytical equations corresponding to each flow
regime have been derived. These flow regimes may
be identified by their characteristic straight lines.
The intersection points of these flow regime straight
lines yield unique equations which can be used to
calculate various parameters or for verification
purposes.

A finding of major importance is that areal anisotropy
can be characterized from a pressure buildup or
pressure drawdown test in a single vertical well if the
reservoir width is known from other sources.

¢ Tt is important to run a long test in order to observe
the radial, linear and dual-linear flow regimes to
calculate the x and y directions permeabilities.

¢ The length and width of the reservoir can be
determined from the pressure test if the
pseudosteady state is observed. Otherwise, it must
be estimated from seismic data.

Nomenclature:

A . Area, ft!

B . (il formation factor, bbl/STB

b . Actual distance from well to the closest lateral

boundary along the x-direction, ft

b,’ : Distance from well to the closest lateral
boundary (along the x-direction) affected by
anisotropy, ft

b, . Actual distance from well to the closest lateral
boundary along the y-direction, ft

b,’ : Distance from well to the closest lateral

boundary (along the y-direction) affected by

amsotropy, ft

Compressibility, 1/psi

Formation thickness, ft

Mean geometric permeability or areal

permeability, md

e L

k, k, md

k, k. md

I e Horizontal maximum principal permeability, md
Kpnin Horizontal minimum principal permeability, md
k, Permeability i x-direction, md

k, Permeability in y-direction, md

P Pressure, psi
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Py . Dimensionless pressure derivative
Pp : Dimensionless pressure
P, . Imtal reservoir pressure, psia
P. . External reservoir pressure, psia
P : Well flowing pressure, psi
q . Flow rate, bbl/D. For gas reservoirs the units
are Mscf/D
Ip . Dimensionless radius
T, . Drainage radius, ft
T, © Well radius, ft
8 . Skin factor
8, : Total skin factor
T : Reservoir temperature, “R
t . Time, hr
t*Am
(PY . Pseudopressure derivative function, psi‘/cp
tp . Dimensionless time
pies . Reservoir length, ft
Y : Actual reservoir width, ft
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