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A Matlab Implementation of a Speech Recognition
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Abstract: In tlis study, we present a speech recogmtion mterface designed for vocal control. The
imnplementation has been realized under the Matlab environment with scripts m C. The program uses the
statistical HMM (Hidden Markov Models) for speech modeling, the K-means, Baum-welch algorithms for
training and codebook conception and finally the Viterbi decoding algorithm for the recogmition process.
The recognized word decision is based on the maximal likehood value. The speech database 1s constituted of
1000 words mono-speaker associated with a denoising module before be applied to the developed interface.
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INTRODUCTION

Speech  processing,
recognition are
applications in telecommunications and data transmission.
The difficulty of the automatic recogmition depends on
the implemented processing method and the acquisition
enviroment (Calliope, 1989).

Now, 1t exists several softwares intended for speech
recognition with variable vocabularies, but therr
performances are still inferior to the desired recognition
ratio especially in the case of multi speaker or in the
presence of noise perturbation. That's why we will
develop a Matlab application with a real time speech
acquisition interface which can be easily implemented on
a DSP.

coding, synthesis and

considered among the promising

SPEECH RECOGNITION SYSTEM

The speech recognition system for isolated words
that will be developed is based on HMM speech
modelling Let’s consider a vocabulary of the number
(R) of words to recognize. The recognition method
illustrated by Fig. 1 can be divided into the following
steps (Boite et al., 2000):

¢ Describing a networl which the topology reflects
sentences, words of the vocabulary.

* Realizing a traming of the database: Words with
HMM model : A= (1, A, B).

¢ Computing the maximum likehood.

+  Recognition decision.
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Fig. 1: A speech HMM recognition principle
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Fig. 2: The speech recognition system

To realize this system, we have developed a vocal
control interface constituted of a new toolbox under
Matlab. This toolbox uses next occurrences of the words
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Fig. 3: Parameter extraction of a speech signal
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Fig. 4: MFCC parameters of a speech signal

which are the most used for a voice control (start, stop,
yes, no, go, help, erase, rubout, repeat, escape,...)
extracted from the database.

This interface is based on two modulus : Training and
recognition (Fig. 2).

Parameters extraction: The signal parametrisation has for
objective to compute the MFCC coefficients of every
20 ms frame. These parametrs characterize every word
before be added to the codebook.

The training and recognition is based on the
identification of the parameters of a 3 stage HMM (Dutoit,
2002). The acoustic vector parameters of each frame is
constituted 16 coefficients (13 coefficients MFCC+1
pitch+1 energie+1 derivative of the energy) Fig. 3.

The cepstral analysis and MFCC coefficients are
based on the algorithm of Fig. 4.

Vector quantification: The vector quantification is an
operation which allows to represent a vector with N
components. [t must be organized to minimize
quantization errors. Its implementation is conducted by
the K-means algorithm in order to summount the
mnitialisation of the codebook parameters (Rabiner and
Juang, 1993).

HMM training: In this phase, each word of the
vocabulary will be connected to a hidden Markov model

HMM given by

A=(m A B) Y]

Fig. 5: A three state MMC of a speech signal

with:

Q=1{ql, g2, ...qT} 1s the optimum sequence of the state
which has given the sequence of observationsy = {y1, y2
..., yT} then the model is defined by the following
parameters (Burno, 1995):

e Number of states S (three in Fig. 5).
e The number K of observations y(k) of the codebook
+  The Matrix A : A=[a;] of probability transitions:

4= p(g. = Sj lge: =) @)

+  The Matrix B: B = {b; (k)} of probabilities for each
observation:

b () = p(yi=vilg: = S) €)
with: 1<j<S, 1<k<K

¢ The initial probability (p) of each states S.

™ = p(e=5) @)

with: 1<i<S

As each word will be represented by the vector
vy = {yLy2,...yT} among the K vectors of the code book,
the training is resolved by estimating the parameters
(A,B,m) of the model | and maximising the probability
p(|A) (Sakoe and Shiba, 1978; Levinson ef al., 1988).

RESULTS AND DISCUSSION

We have programmed under MATLAB a GUI
interface (Fig. 6) including the algorithms described
previously. We have studied the effect of all the
parameters on the recognition ratio, such as the codebook
number K, the number of HMM states S, the MFCC
coefficients. For example, we presented in Fig. 6 and 7 the
maximal likehood and recognition ratio of the word
“ENTER”.

1588



J. Eng. Applied Sci., 2 (11): 1587-1591, 2007

SPEECH PROCESSING INTERFACE, CHERIF A (2005)
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Fig. 6;: The ASR main menu
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Fig. 7: The pitch evolution with cepstral analysis

The main menu interface: The ASR interface has ten sub-
menus for speech analysis and representation, speech
denoising, parameters extraction, HMM modeling, training
and recognition.

Speech acquisition and analysis: Figure 7- 9 illustrate the
speech analysis of a male sound “baabon.wav’ with a
sample frequency 11025 Hz. For example, Fig. 7 gives
the pitch values by using the
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8: Spectrogram and the 3 formants extraction
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9: Speech denoising: Original, noisy and enhanced

speech

cepstral method. Yet, Fig. 8 gives the first 3 formants of
the same speech signal.

Recognition results: The recognition procedure is based
into two stages:
The training and the recognition.

As illustrated in Fig. 10-12, for each stage, there are

four steps:
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Speech processing and parametrisation.
Speech HMM model of the acquired word.
Maximal likehood ratio computing.
Recognition decoding and decision.
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Fig. 10: HMM model of the word ENTER (S = 3)
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Fig. 12: Maximal likehood ratio of the word: ENTER
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After a real time acquisition of the word, a speech
processing stage, and a HMM modelling, it is compared
with all the codbook models thanks to the Maximal
likehood ratio MLR. The maximal value corresponds to the
recognected word (Fig. 13: word : Ariana : MLR = 100% ).
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Fig. 13:Maximal likehood ratio of the word ‘ARIANA’
without noise (SNR= 10dB)

) e TERFACE DE RECOMMASSANGE F | A PARDLE Par i, [ |11
e FCPRI3 codsbookiFimed=1

A [ el oL

poak-cap el =13 Hive stz HWMW -3

¥ miad a7 T it ngean

Le mot acques est: ARISpET WA

[

.ml.r-c..lu mal

. T
10 20 a 4]
N® du modele Hyi

(=
=

Fig. 14:Maximal likehood ratio of the word ‘ARIANA’
with noise (SNR= -5 dB)

We have tested our ASR program under a noisy
environment (noisy speech such as in Fig. 9).

Figure 13 and 14 demonstrate that the Maximal
likehood ratio MLR has a confusion value (60%) for a
noisy speech signal. Hence, the recognition ratio is very
affected by the speech quality (noisy signal) that’s why
we have used a denoising program before the speech
processing and recognition.

This experience is repeated for all the 100 words of
the codebook, we found that 94 words were exactly
recognized, which corresponds to a recognition ratio of
94 %.

CONCLUSION

In this study, we succeed to develop a HMM
speech recognition interface which was implemented
under Matlab and tested in a real time functionning.
The simulation results demonstrated that the recognition
ratio is performed if the system is associated with a
speech denoising module. To resolve this problem we
integrated in our interface a denoising program which
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uses the wavelets analysis. This deionizing toolbox was
presented in a previous study. Besides, with the
experimental and simulation results (training tests on
1000 words codebool) we obtained a recognition ratio
of 94% 1in a clean environment (without noise).
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