M Journal of Engineering and Applied Sciences 2 (10): 1565-1568, 2007
We]l

EAL . AT ¥ [SSN: 1816-949X
Online © Medwell Journals, 2007

Potentiality of Use Case Point’s Method for Estimating the Size and
Effort of Software Development Projects

'D. Lakshmanan, *V. Gunaraj, M. Kaman, *R. Sivakumar, *G. Deepakkannan
"Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
*RVS Engineering College, Coimbatore, Tamil Nadu, India
*Tamilnadu College of Engineering, Coimbatore, Tamil Nadu, India
*Amrita University, Coimbatore, Tamil Nadu, India

Abstract: The usage of use case models has been progressively used to capture and depict the functional
requisites of a software system. There are different approaches and methods to successfully count on effort
using use cases. A few researchers tested use case points methods and revealed that it has the potential to be
a reliable source of estimation alike the function point method. Estimation of size of software development
projects has a strong effect. Use case modeling i1s mereasingly being utilized not only to describe the software
and system requirements and a basis of design, development, testing, deployment, configuration management
and maintenance but also to have an estimation method that makes the use of them. Perhaps this study aims
at the potentiality of use case point’s method for estimating the size and effort of software development
projects, including the major limitations and offers some possible rectification.

Key words: Functional pomnt analysis, use case pomt, estimation, complexity factor

INTRODUCTION

A recognized and widespread technique to capture
the business processes and requirements of a software
application project 1s use case modeling. It provides the
operational scope of the projects and hence the analyses
of their contents provide good perception on the effort
and size needed to design and implement the project.

Designing and implementation efforts are less for
small projects when compared to large projects. The
factors affecting project completion time are:

* Number of use case completion steps.

¢+ Number and complexity of actors.

¢+ Technical requisites-concurrency,
performance.

* Environmental factors-development
experience and knowledge.

security and

teams’

Estimation using these factors in a projects life cycle
produces an estimate within 20% of the actual completion
time which will be helpful for project scheduling cost and
resource allocation.

USE CASE POINTS (UCP) METHODS
The use case point method has the power to estimate

the man-hours a software project requires from its use
cases. Based on work by Karner (1993). The UCP method

abstracts an equation analyzing the use case actors,
scenarios and various technical and environmental
factors. UCP is inspired from function point analysis. This
can be recognized by readers familiar with Allen
Albrecht’s Functional Point Analysis (Albrecht, 1979).
Variables of UCP equations are:

¢ Unadjusted Use Case Points (UUCP)
¢ The Technical Complexity Factor (TCP)
¢ The Environmental Complexity Factor(ECF)

Each varables 13 defined and computed separately
using the three factors namely,

s+ Weighted values
s Constraining constants
* Subjective values.

The first two of the above were mitially based on
Albrecht but later on modified by people at objective
systems, LLC, based on their experience with
Objectory. Objectory is a methodology created by Tvar
Jacobson for developing object oriented applications
(Tacobsor, 1998).

The subjective values are determined based on the
perception of the projects technical complexity and
efficiency. In addition to that, the equation is used to
estimate the number of man-hours needed to complete a
project when productivity 1s mcluded.

Corresponding Author: D. Lakshmanan, Kumaragur College of Technology, Coimbatore, Tamil Naduw, India
1565

J. Eng. Applied Sci., 2 (10): 1563-1568, 2007

The complete equation is
UCP=UUCP*TCF*ECF*PF
Steps necessary to generate the estimate are:

* Determine and compute the UUCPs.

¢ Determine and compute the TCFs.

* Determimne and compute the ECFs.

¢ Determine the PF.

* Compute the estimated number of hours.

DETERMINATION OF THE VARIABLES
UUCPs:

¢ The Unadjusted Use Case Weight (UUUCW)
* The Unadjusted Actor Weight (UAW)
« UUCW

UUCW 18 computed based on the total number
of activities contained in all the use case scenarios.
The number of steps in a scenario affects the estimate.
The use case categories are simple, average and
complex.

¢ The larger the number of steps the use case scenario
will bias the UUUCW towards complexity and
thereby increasing the UCPs.

* The smaller the number of steps the use case
scenario will bias the UUCW towards sumplicity and
thereby decreasing the TUCPs.

TUCW is computed by multiplying each total by its
specified weighing factor and then adding the products
(Table 1).

UAW: Similar to UUCW, the Actor Types are classified as
simple, average or complex. The TTAW is computed by
totaling the number of actors m each category,
multiplying each total by its specified weighing factor and
then adding the products (Table 2).

The UUCP 1s computed by adding the UUCW and the
UAW. The UUCP is unadjusted because it does not
account for the TCFs and ECF's.

TCFs: The impact on productivity that various technical
issues have on a project is estimated by 13 standard
technical factors. According to relative impact, each factor
1s weighed (Table 3).

Table 1: UTJCW factors

Category
Simple

Description Weighting factor
*Simple user interface 5
*Single database entity

*Three or less steps

*Trmplementation-less

than five classes.

*More interface design 10
*Two or database entity

*Between four and seven steps
*Implementation-between

five and ten classes

* Complex user interface 15
*Three or database entities

*More than seven steps
*Implementation-meore

than ten classes

Average

Complex

Table 2: UAW factors

Actor type Description Weight
Rimple Represents another sy stern with 1
a defined application

programiming interface.

Represents another systern 2
interacting through a protocol

like Transmission control

Protocol/Intemet protocol.

The actor is a person interfacing 3
via a graphical user interface.

Average

Complex

Table 3: TCFs factors

Technical factor Description Weight
T1 Distributed system 2
T2 Performance 1
T3 End user eficiency 1
T4 Complex Internal 1
Processing
TS Reusability 1
T6 Easy to install 0.5
T7 Easy touse 0.5
T8 Portability 2
T9 Easy to change 1
T10 Concurrency 1
T11 Special security features 1
T12 Provides direct access 1
for Third Parties
T13 Special user training 1

Facilities are required

PRECEIVED COMPLEXITY

The development team evaluates the technical factor
for each project and a perceived complexity value between
0 and 5 are assigned. The perceived complexity factor 1s
subjectively determined by the development team’s
perception of the
applications (Table 4).

projects complexity-concurrent

Calculated factor = Each factors weight™
perceived complexity factor
Technical total factor = YCalculated factors

1566

J. Eng. Applied Sci., 2 (10): 1563-1568, 2007

Table 4: The perceived complexity factors

Table 5: ECFs factors

Perceived complexity Technical factor Environmental factor Description Weight
0 Irrelevant for project El Familiarity with UML 1.5
3 Average E2 Part-time workers -1
5 Strong Influence E3 Analyst capability 0.5
E4 Application experience 0.5
. . ES Object-oriented i 1
Two constants are computed with the Technical Ject-onented expenietice
Eo Motivation 1
Total Factor to produce the TCF. The constants E7 Difficult programming language 1
constraint the effect the TCFE has on the UCP equation ES Stable requirements 2
from a range of 0.60 (perceived complexities all zero)toa
. g £1.30 (P ved lp .. 1 fi) Table 6: Perceived impact factors
maximum of 1.30 (perceived complexities all five) Perception impact Perception
0 No negative
TCF value <1 — Reduce UCP, since any +ve value * +ve 1 Strong negative
fraction 3 Average
5 Strong positive

Tt reduces the magnitude.

100%0.60 = 60 Reduction by 40%

TCF value=1 - Increase UCP, since any +ve value * +ve
mixed number

Tt increases the magnitude.

100%1.30 = 130 increases by 30%

Since the constants constran the TCF from a range
of 0.60 to 1.30, the TCF can impact the UCP equation from
40% to a maximum of 30%.

Complete formula to compute TCF,

TCF =Cl1 +C2YWi*Fi
Constant] (C1)=0.6

Constant2 (C2) = 0.01

W = Weight

F = Perceived Complexity Factor

ECFs: The ECF provides a concession for the
development team’s experience. More experienced team
will have a greater impact on the UCP computation than
less experienced teams (Table 5).

The development team determines each factors
perceived impact based on its perception, the factor has
on the projects success (Table 6).

For mstance, team members with little or no motivation
will have strong negative impact (1).

Team members with strong object-oriented experience will
have strong positive impact (5).

Each factors
perceived impact
Environmental total factor = Y. Calculated factors

Calculated factor welght™*

Two constants are computed with Environmental
Total Factor to produce the Final ECF. The constants,
based on interviews with experienced Objectory users at

Objective Systems (Karner, 1993), constrain the inpact the
ECF has on the UCP equation from 0.425 to 1.4. Therefore,
the ECF can reduce the UCP by 57.5 percent and increase
the UCP y 40%. The ECF has a greater potential impact on
the UCP count than the TCF.

The formal equation is

TCF=Cl1 +C2X Wi*Fi

Constantl (C1) = 1.4

Constant2 (C2) = -0.01
W = Weight
F = Perceived impact

Calculating the UCP: The UCP equation 18
UCP = UUCP * TCF * ECF

Estimated hours: Additional factor is required to estimate
the number of hours to complete the project is PF.

Total Estimate = UCP * PK
PF = Development man-hours needed / use
case point

Tnitial PF can be estimated from the past projects. For
instance, if a past project with a UCP of 120 took 2200
hours to complete, PF is 18 man-hours per use case point.
If no historical data has been collected, consider two
possibilities:

» Establish a baseline by computing the UCP for
previously completed projects.

» Use a value between 15 and 30 depending on the

total experience and past

accomplishments. If it 13 a brand new team, use a

value of 20 for the first project.

development teams

1567

J. Eng. Applied Sci., 2 (10): 1563-1568, 2007

After the completion of the project, divide the number
of actual hours it took to complete the project by the UCP
count. The product becomes new PF.

CONCLUSION

Previously, the project estimate was a supporting
tool for the managers,
professionals plan in the process of seeking resources

developers and testing
with regard to the project requirement. The case studies
enunciated in this study overtly edify that the UCP
strategies may produce an early estimate ranging from 1
to 20% of the actual effort and perhaps closes to the
actual effort when compared to the experts and other
estimation strategies. As a matter of fact, in many
conventional estimation methods, influential technical
and environmental factors are not given due
UCP method quantifies these

subjective factors mto equation variables that may be

consideration. The

tweaked over time in the production of several precise
estimates. Ultimately, the UUCP method possessed a
versatile extensibility to a variety of developments and
testing projects. In short, it is comprehensive for learning
and intelligible for applying.

REFERENCES
Albrecht, AT, 1997, Measuring Application
Development Productivity. Proc. Of IBM

Applications Development Symposium, Moneterey,
CA, 14: 17 9-183.

Anda, Bente, 2005. Tmproving Estimation Practices By
Applying Use case models. <www.Cognizant.com/
cog/community/presentations/Test Effort Estimati
on.pdf.>

Anda, Bente et al., 2005. Effort Estimation of Use cases
for Incremental Large-scale Software Development.
27th International Conference on Software
Engineering, St. Louis, pp: 303-311.

Carroll, Edward R., 2005. Estimation Software Based on
Use Case Pomts.Object-oriented, Programming,
Systems, Languages and Applications (OOPSLA)
Conference, San Diego, CA.

Tacobson, I, G. Booch and I. Rumbaugh, 1998. The
Objectoru Development Process. Addison-Wesley.

Karmner, Gustav, 1993. Resource Estimation for Objectory
Projects. Objective Systems SFAB.

Nageswaran, Suresh, 2001. Test Effort Estimation Using
Use Case Points. June <www.Cognizant.com/cog/
community/presentations/Test Effort Hstimation.

pdf>

1568

