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Abstract: Multicollinearity problem in learning machines occurs when there are high dependencies among the
mput variables. The problem increases the variance of predictive model to cause unstable results. In regression

models, the multicollinearity is also a problem to be solved. Ridge regression is a good methed to settle the
problem of regression. In general, the shrinkage parameter of ridge regression is determined by the arts of

researchers. But, the selections are not always good. So, in this study, we propose an mnprovement of ridge
regression using differential evolution. This 1s an evolutionary ridge regression to find better shrinkage
parameter. To verify performance of our research, we make experiments using objective data sets.
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INTRODUCTION

Regression 1s a predictive method for data mimng.
Generally, this has one or more explanatory variables
which predict or explain a response variable with
quantitative or qualitative values. Using regression, we
have got good performances in supervised leamning of
data mining. But, multicollinearity decreases the efficiency
of regression model. That is, when high correlation within
mput variables 1s mn regression data, multicollinearity
raises the serious problem in the inference of regression
coefficients. So, we need a settlement the problem of
multicollinearity in regression. A solution of the problem
15 ridge regression. This is one of biased estimation
techmques. Also, we overcome the problem of
multicollinearity by ridge regression. Ridge regression
was proposed by Hoerl and Kennard (1970) researched
the ridge regression for applying to nonorthogonal
problems. The nonorthogonal  problems
unsatisfactory least square results (Hines ef al, 2002,
Hoerl and Kennard, 1970). The ridge regression is able to
lead to good estimator estimates in nearly rank deficient
problems (Ismail and Principe, 1996). The ridge estimator
diminishes the mean square error by reducing the variance
compared with ordinary least squares estimators. So, the

raise

main goal of the ridge regression 1s to solve the problems
of the least squares method which are encountered
whenever the input vectors are highly correlated, that is,
multicollinearity (Olague et al., 2003). In ridge regression,

we have to determine a shrinkage parameter which is a
small positive quantity. For example, when tlus parameter
15 0, the regression model 1s to be linear regression.
Generally the shrinkage parameter of ridge regression is
determined by the arts of researchers using prior
knowledge. But, the selections are not always good and
efficient. In thus study, we propose an improvement of
ridge regression using Differential Evolution (DE-ridge) to
settle the problem of ridge regression. Our proposed is an
evolutionary ridge regression to find better shrinkage
parameter than previous determined parameters. To verify
performance of DE-ridge, we make experiments using
objective data sets from objective machine learming data
and simulation data.

Differential evolution: Differential Evolution (DE) is a
parallel direct and a population based search
methods  (Engelbrecht, 2002; Price er al, 2005;
Ronkkonen ef al, 2005, Stom and Price, 1997). DE
is not depended on a mutation operator based on
probability distribution. A new operator is applied to
DE. The operator of uses the differences between
randomly selected mdividuals. Also, DE supports
good genetic method to solve real valued problems.
In general, DE combines two vectors with another
vector. Compared with other evolutionary algorithms, DE
has fast computing speed to get the solutions (Storn and
Price, 1997). We show the general view of DE in the
following.
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(s1) Initialize the population.

(s2) Select randomly target vectors, (X, X;, X;).

(s3) Build weighted difference vector, F(x, - x,).

(s4) Add x, to F(x, - x,) for generating a trial vector, v
v=x, +F(x, -x,).

(s5) Do crossover the trial vector and the current vector,
x, with Crossover Rate (CR).

(s6) Replace or retain x;.

Shrinkage parameter of ridge regression: Ridge
regression 18 one of the methods for solving
multicollinearity (Myers, 1990). Multicollinearity caused
by near-linear dependencies among the input variables
may produce large variances. So, it decreases the
performances of predic-tive models. Linear regression is
a estimation procedure by Ordinary Least Squares (OLS)
(Hastie et al., 2001). OLS gives unbiased estimate and the
minimum variance of all unbiased estimators. But, OLS
does not give upper bound on the variance of the
estimators. In addition, it may produce large variance
when multicollinearity presents. Ridge regression is one
of biased estimation techniques to solve the problems of
linear regression by OLS. The ridge regression estimator

of the coetficient P is computed by solving for by, in the
following equation.
(Xx+ld)bndge - 'y (1)

Where X is the design matrix and displays the input
data. Y represents known output data and I 1s identity
matrix. K (> 0) is a shrinkage parameter. by, 1s given by
the following.

Bpigee = (XX + k) Xy (2

ridge

In nidge regression, the role of k 1s to moderate the
variance of the estimators. So, it is important to determine
the optimal k. But, the selection of k is performed
subjectively using different measures which are ridge
trace, repeated method to convergence, Prediction sum of
Squares (PRESS), Generalized Crossvalidation(GCV), VIF,
Hoerl-Kennard-Baldwin (HKB) estimator (Myers, 1990;
Zhang and Horvath, 2006). Also, A has been determined
by a tuning and validation set (Embrechts, 2004). These
approaches demand quite computing time consuming for
large data sets (Huet ef al, 2003). So, we propose an
efficient method for determining optimal k using an
evolutionary ridge regression.

DIFFERENTIAL EVOLUTION BASED
RIDGE REGRESSION

In this study, an efficient method for improving
ridge regression using  differential
proposed. We call this differential evolution based ridge

evolution 1s

regression (DE-ridge). Differential evolution is used to
shrinkage parameter of the ridge
regression in our research. We use PRESS (prediction

determine the

sum of square) statistic for constructing the fitness
function of DE-ridge. The statistic is based on the
following residual sets.

=f‘(xj)—yj (3)

f(x), which is jth output, is predictive values of
output variable by input x. Also, y; is practical jth
observation of output values. In this study, we define
fitness function of DE-ridge as the following.

Xi - 1) )

Fit(x;) = Z

Where, f (x ;) is the predictive value evaluated at
x = x and vy, 18 not used m obtaining the regression
coefficients. Our DE-ridge algorithm is shown in the
following four steps.

(1: Initial step)
Letg =0,
mutialize p,
nitialize k
initialize population L, with n individuals

In this step, g, p and k in the imtal step are
generation, reproduction probability and scaling factor
respectively. The range of p 1s between 0 and 1. Also k
has positive values. L_ is initial population which has
candidate solutions of shrinkage parameters for ridge
regression. We reproduce a candidate parameter of
population using next DE reproduction step.

(2: Reproduction step)
Foral;m{l,,. 1., 1.}
select n,, ny, n; from U (1, ...
select r~U(1,... R)
fors=1,...R

,n) (n, #n, #n,)
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if (U(0,1) < p or s=r)
Og,ni = 1g,n3i + k(lg,nli - 1g,nzi)
Else
O =Ly
l,; 1s an offspring of generation g from current
population {l,;, 1 ..., L.}. We randomly select three
candidates, which are 1,,.l,,, and 1_; with n, # n, # n,
from the cumrent populaton Also, n, n, and n, are
generated from umiform distribution U(1, ..., n).
Continuously r, which is the number of genes of a
chromosome, is selected from U(1, ... |R). O, and 1, are
the jth parameters of the offspring and the parent.

(3: New population step)
Select new population L.,

R L if Fit(oy )< Fit(l
g+1ln 1

e

o otherwise

We are able to update better population for objective
shrinkage parameter of ridge regression using fitness
function Fit (x,) which is defined above. For all candidates,
the parameter with better fitness is selected for new
population. That is, the current parent is replaced with its
oftspring if the fitness of the offspring is better, otherwise
the parent is gone to the next generation.

(4: Convergence step)
Repeat until convergence

The convergence criteria of our DE-ridge are similar
to other evolutionary algorithms (Fiben and Smith, 2003).
DE-ridge convergence is reached when the maximum
number of generation 1s over and the fitness value does
not change sigmficantly.

RESULTS

We verify improved performances of our DE-ridge
using data sets form objective machine learning data and
syn-thetic data. By the evaluative measures of ridge trace,
repeated method to convergence, Prediction sum of
Squares (PRESS), Generalized Crossvalidation (GCV), VIF
(variance mflation factor), Hoerl-Kennard-Baldwin (HKB)
estimator (Myers, 1990, Zhang and Harrath, 2006). The
following table shows summary mformation of our
experimental data sets.

California is California housing data set from the
Statlib repository in the Table 1 Chttp:/lib.stat.cmu.
edu/datasets/). From the DELVE reposi-tory, kinematics

data is concerned with the forward kinematics of 8 link
Last
objective data set, machine 1s machine cpu which 1s
relative cpu performance data from UCT machine learning
repository (http://mlearn.ics uct.edu/MLRepository. htl).
We know the multicollinearity information of the data by
VIF value in the above table. So, we find that California
and synl data sets have multicollinearity. In our
experiment, synl, syn2 and syn3 are simulation data sets

robot arm  (http:/Avww.cs.toronto.edw/~delve/).

with different correlation coefficient as the following
figure.

In the above Fig. 1 a and b represent high and low
correlated. Fig. 1¢ shows independency between input
variables. We know visual information of experimental
data sets m the following figure.

Figure 2 a-c scaftter plot matrix of california,
kinematics and machine data respectively. Also, the plots
of synthetic data sets according to correlation coefficients
are shown in Fig. 2 d-f . Our experimental results are
shown in Table 2. We compare DE-ridge with origmal
ridge regression by MSE (Mean Squared Error) (Hajkins,
1999; Mitchell, 1997, Vaprmk, 1998).

According to the results, we know the improved
performance of DE-ridge. Because MSE values of DE-

Table 1: Summary of data sets

Data # of points # of variables VIF

California 20640 8 36.0890
Kinematics 8192 8 1.0013
Machine 209 6 3.2740
Synl 1000 3 7.1688
Syn2 1000 3 1.4605
Syn3 1000 3 1.0015

Table 2: Comparison results ridge and DE-ridge regressions

Data Regression type Parameter MSE
California Ridge 2.20 0.398317
DE-ridge 19.87 0.398229
Kinematics Ridge 10.90 0.040900
DE-ridge 0.05 0.04089%4
Machine Ridge 247 0.368413
DE-ridge 99.98 0.303627
Synl Ridge 20.06 1.151916
DE-idge 0.02 1.151513
Syn2 Ridge 13.38 0.973950
DE-idge 61.20 0.969694
Syn2 Ridge 7.38 1.015627
DE-idge 28.50 1.015298
1 0.9 07 1 03 04 1 0 0

09 1 08 03 1 05 0 1 0
07 08 1 04 05 1 0 0 1
@® ® @

Fig. 1: Correlation coefficient of synthetic data
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ridge in above six data sets are smaller than original ridge
regression. So, we are able to verify our research.

CONCLUSION

In this study, we proposed DE-ridge model to settle
the problem of ridge regression. Using DE, the shrinkage
parameter of ridge regression was able to be determined
objectively. Tn addition, we knew improved performance
of DE-ridge by experimental results using six data sets. In
future works, we will apply DE for objective determmation
of the parameters in diverse machine learming algorithms.
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