M@dWe]l Journal of Engineering and Applied Sciences 2 (1): 96-104, 2007
2 2 PP
CEEEEEE © \fedwell Journals, 2007

One-Stage Implicit Rational Runge-Kutta Schemes for
Treatment of Discontinous Initial Value Problems

P.O. Babatola, R A. Ademiluyi and E.A. Areo
Department of Mathematical Sciences, Federal University of
Technology Akure, Ondo State Nigeria

Abstract: This study describes one-stage Tmplicit Rational Runge-Kutta scheme for treatment of discontinuous
ordmary differential equations. Its development adopts power series expansion method (Taylor and Binomial).
The analysis of its basic properties uses Dalhquist model test equation. The results show that the schemes are

consistent, convergent and A-stable. Numerical computations and comparative analysis with some standard
methods show that the new schemes are efficient and accurate.
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INTRODUCTION

The mathematical formulation of physical situations
mn simulation, electrical engineering, control theory and
economics often leads to an initial value problem.

y'=fx,y)Ly(x, )=y, (1)

i which there 13 a pole m the solution. A simple example
is the innocent looking initial value problem

y'=y,. y(o)=1 2
whose exact solution 1s

y)= ), 3

with a simple poleatx =1.

ODEs possessing these type of properties are called
singular/discontinuous mitial value problems. Another
example of such class of ODEs are IVPs mn which the
right-hand side function of f (2) contains discontinuities
mn the form of fimte jumps in its components or itself or in
some of its derivatives f, f, f", {9
An example 1s the [VPs

0 x <0
=0 ", y(=1)=0 €
y {Xﬁ, <30 y(=1)

whose theoretical solution 1s
0, x <0,

y(ki=q 5
XA, x >0

The switching on and off of electrical circuits and the
state of the economy of a nation disrupted by an

®)

unforeseen circumstances or disaster are good practical
examples of these problems. The development of the
linear multistep methods 1s exclusively based on
polynomial mnterpolation which incidentally perform very
poorly m the neighbourhood of a singulanty. An
alternative,  strategy  based on  non-polynomial
interpolating functions was developed using either
perturbed polynomials or rational functions due to
1-11]

pioneering effort of Ellison et all This perhaps

motivated Yuafu® to propose an Explicit rational

Runge-Kutta Scheme of the form

R
Vot ¥ WE,
B N ©

1+y, ¥V H,

i=1

yn+l =

where,

K, =hf{x, +ch.y, +3Y a,K)
i=1
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H,=hg(x, +dh,z,+Y b, H) N
i=1

and

glx,.z,)=—Z; f(x.y,)

with the constraints

i

=X,
=1

4=,

Because of its small stability region the present work,
redefined the formular as to include the mmplicit family of
the method. That is in (6) a;# O for j=1, b, # O for j=1.

The parameters V., W, e, d. a, b; are to be
determmed from the system of non-linear equations
generated by adopting the following steps:

¢ Obtained the Taylor series of expansion of H’s and
K;’s about point (x,, v,) for i=1(1)r.

¢ TInset the series of expansion into Eq. 8

¢+  Compare the final expansion with the Taylor series
expansion of y,,, about (x,, y,) in the powers of h.

The numbers of parameters normally exceed the
numbers of equations, but in the spirit of King,
G1ll and Blum, these parameters are chosen to ensure that
one or more of the following conditions are satisfied.

¢+ Adequate order of accuracy of the scheme is
achieved.

¢+ Minimum bound of local truncation error exists

¢ The method has maximize interval of absolute
stability

*  Mimmum computer storage facilities.

The determination of these parameters are taking up
in this unit the Scheme.

Derivation of the scheme: Setting r =1 i Eq. 6, we obtain
a general one-stage implicit RR-K method of the form

Vot WK ®)

Yan 71+Yn Vl Hl

where,

K, =(x, tehy,+ak)

H, =hg(x, +dh, 7, +b,H) )
x .,z F-Zfix .y )endz = | a0
g, 2,07 -Z fix,y,)andz, = 1f
with the constraints
Cl a11
d, =b,, an

Adopting binomial expansion theorem on the right hand
side of (11) and ignoring terms of order higher than one,
yields:

Y, =V, + W, K, —y2V H,+ (higher order terms) 12

The Taylor series of ynt1 about (xn, yn) gives

2 3

y :y +hyr 7h_yn +_ym +E y(4)+0h5
n+l n n 2 n 6 n 24 n

(13

Now.
v =, y,)=1,
y", =x+1, f =Df

y" £, +2f, £, + 2 f +f,(f,+f, f,)=D*f, + f, Df,

Yo =h + 30, fx + 360 £+ £,
+f (f, +2f, £+ 2+ )

+(f, +f, f,) (3, +2f, £, +fy°)=
D’f, +f, D’ f, +3Df, Df, +fy’ Df,

a4

where,

Dt =f_ +2f f__+3f°f_ +1’

n xRy n xRy fyyy

2 _ 2
D*f,=f_+2f,f_+£f
Dfy=f_+f f_+f;
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Substitute (17) into (16)

z

h h o,
Vo =¥, Thi, ?Dfﬁ ?(D f, +fnyn) +

4 a5
h—(D3 f,+f, D’f, +3Df,Df, +f, Df, )+ 0h’
24
Similarly expanding k, about (x,, y,)
Klzh(fn +h(c,f, +a, K, + 1 0

(cfh*f,, +20,ha, K £, +k| £, )+0h’

Collecting coefficients of equal powers of h, Eq. 19 can
be expressed in the form.

K, =hA, +h’ B, +h’ D, + Oh* (17)
where,
A =f B =C ({+f fy) =CDf,
D,=C,B, fy+}/ch (f +2f, f_+f7f ) as)
=cf (DF, f,+ , D'f,)

In a similar manner, expansion of H, about (x,, z,)
vields

H, =hN, +h* M, +h’R, +0h* (19

where,
N, =g(x,.2,)=g,
Ml = d1 ng + gn gz) = dngn
R, =4, Mlgz+%d12 (gxx+2gngxz+gigzz) (20)
=d; (g, Dg, +4D’g,)
with

Dg, =g. 8.8,

Dy, =g, +2g, g.t8l8., @D

To facilitates the comparisen of coefficients we can
express g and its partial derivatives in terms of f and its
partial derivatives.

That 1s, 1f

_fn _fx _fxx
gn: 2 ’gx :72’g}{x:

v.

gZ:72fn ‘g :72forf

¥y Ox=z =¥

n n

—2f
gn{z = + fxxy’gzz

Ya

== 2f, -y, T

¥y

8= —2f, —vo 1.

VY
g.=4y: f, +6y° £+ dy? £ (22)

Substituting (20) into (21),
We obtamed

1
v, v, Y,

2
{— 2, +f, J{ Df, + 2ty J+ y
2
B -d’ ¥u ¥u (23)

1 2
Yu ¢
sznfﬂ i+fx
Yol ¥u

Adopting (15) and (19) in (12), we have

_ _ 2
N, = M, —d[Dfn+ 2, }

V.. =y, + W (hA +h*B +h’D, +0h,)
—y:(V,(hN,+h*M,+h’ R, +0h*

(24)

=y, t(WA, 7y121 VN h+(WB, 7y121 V) M1)h2
+(WD,-y:V,R)h’+0h*

(25)
Comparing the coefficients of the powers ofh in
Eq. 24 and 16, we obtained
W, A, —y. VN, =f, (26)
From (22) and (19), we have

,fﬂ
2
1

A=f, N =

L(29)vields

WV, =1 (27)
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and from (22) and (19), we have

2
B, =C,Df,, M, :d—; Df, + 2, (28)
n yﬂ
Substituting (22) into (27)
2
(W, ¢, +V,d)Df, +£V1D1:D—f“ (29)
Va 2
From (28) we obtained
W, G +Vid,= 4 (30)

Taking coefficient of h and h 2 into consideration and
imposing condition

T,,, = 0h’ (31)

We obtained the following system of equations for
family of one-stage of order two.

W, +V, =1 32)
WG, +V, dl :%
Subject to the constraints
4, = ¢ (33)
b, = d,
and a local truncation error
ff
To =(D,£ +£,DF) Y -¥CW—)V,d!| 222 |op'
yn Yn
(34)

s W, =0,V =1,C =4d="%,a,=b, =%m(8)

resulting in
= (35)
1+y, H,
where,
H =hgixl+ %X hz + 4 H) (36)

99

o V,=W,=%.C,=a,= %,d =b, = Y yields.

Yo K
Y = 4 (37)
1+22H,
2
where
Kl=hf(x, + ¥ by, + % K)) (38)
H,=hg(x, + 4 bz, + ¥ H)
+ with
W, =014, V, = 2.d,=C, = 4
a, =b, =4
yields
_Ya.tHE
Yan = (39)
1+322 1,
4
where,
K, =hf(x,+ ¥ b vy, + ¥ K] (40)
H=hgx,+}%h z +}%H)
* (Case
W =1,V =0,C =4, = %:au =b, = P
In Eq. 8 yields.
Yarr = Yo TE (1)
where,
Kl=hf(x, + ¥ hy, + ¥ K)) (42)

Which incidentally coincides with Implicit Euler’s
Scheme of order two.

Analysis of the basic properties of the scheme: The Basic
properties requwed of good computational methods
include accuracy, consistency, convergence and stability.
These properties are investigated in respect of the new
schemes.

Accuracy: Characteristics of computational schemes,
error can be generated when they are used to solves
ODEs. The magnitude of the error determines the degree
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of accuracy of the schemes, if the magnitude of the error
is adequately small, then the method is accurate,
otherwise, It 1s inaccurate and their effect on sclution can
be terrible. It can make the solution unstable. This reason
makes the analysis of the error associated with the
scheme essential. The sources of these ermrors include
local truncation error, roundoff error, discretization error
and propagated error.

Round off error, is an error due to the computing
device.

Mathematically, it 1s expressed as

_p (43)

n+l

Yo=Y,
where v,,, is the expected solution generated by the
scheme while P,., 1s the computer output. However, the
existing literature on error analysis by Fatunla®™ and
Lambert!” indicated that the effect of round off error can
be disastrous because thus will lead to mevitable loss of
accuracy. This class of error is not amenable to
mathematical analysis but its effect can be control by
employing double precision arithmetic.

Truncation error on the other hand is the error
introducedas a result of ignoring higher terms of the
power series during the development of the scheme. Thus

the truncation error T,,, of the scheme is

X )+ W K
T, =y(e, - L R, (44)
1+ yi(x, )V, H,

where,

Kl=hf{xd+eh y(x,)+d, K
Hl=hg xl+dh, z (x,) + b, H)

(44)

g (x,.z,) =Z f(x,,y(x,))
Z,x, =) %/(X )

Assuming that the functions g and f are sufficiently

(45)

differentiable in the interval of integration.

Yn YI'A
47

2f 2f T
TM—[szn+fnyn]£%—%CfW1%Vldf{ n—”]]

Using Lotkins error bound, the bound of T,., can be
found, since the bound of f and it partial derivatives

defined as

0 (X, ¥,)
ox' gy

1+]
| 1\1\/]1 (48)

are assumed to exist for all x €fa, b} and y €{-c, =o).
Consequently the bound of (47) is estimated from the

Tn +1

<6[P[[N*M|=4[R, MG/ -MN+M?) [0 (49)

where,

plz%_%v1d12 _%ch%

V. [ 2fF 2f f
p=—t Z& Tax
Yol ¥Ya Ya

Discretization error en on the other hand is the
difference between the exact solution y (x) at x = x,,, and
the numerical approximation y,.,. That 1s

en-*-l ZYm-l 'Y(Xn+1) (50)

By error propagation, we mean the process by which
the various errors mentioned above transferred from step
to step. For instance when iterating with a numerical
scheme, we obtained a sequence of approximate values
v i =1 (1), if the value of v, has an error and y, depend
onyl, it will inherit error from y,, continue in this way,
errors are accumulated and the final solution may be in
serious inaccuracy. Such error resulting from inheritance
of errors 1n preceeding steps 1s called propagated error.
Such may either grow or decay.

Consistency: A numerical method 15 said to be consistent
with the differential equation if the numerical method (11)
exactly approximates the differential Eq. 1.1 to be
solved Tain.

From (8) the numerical solution yn+1 atx = xn+1 is
seen to satisfy the difference Eq.

+W K
ym:yﬂ 1 (51
l+y, VI H

where,
K, =hf(x, +C by, +a,K)
Hl=hg(x, +d h.z +b, H)

(52)

Subtracting vy, from both sides
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VT WK,
Yo "¥u=Ya v vVH
Yo Vi1 (53)
_¥u d+y, VH) -y, +WEK
1+Yn Vl Hl
Yn+YI21V1H1_YH+WKI
l+y, V. H,
2
Yn+17yn:yn VIHI +WK1‘ (54)
l+y, ViH,
2
v, V,H W K
(Va1 = ¥ud= p— L (55)
1+y, VH, 1+y,V H,
But by definition
K,=hfx, +C hvy, +a, K) (56)

H =hgx,+d hz +b, H)

Using this in Eq. 35 and divide both sides of (54) by
h and take limit as h tends to zero.

h

Vo1~ ¥n | ya Vi H + W K 1
h 1+y, V,H,

yi'\flhg(xn+d1 h,Z,+b, H)+W hf (x, +c b, y, +a,,K,)
I+y, Vihg(x, + d/h, 2 +b, H))
h

VoV hg(x +d,h, Z_+b, H )+
W hf(x,+ch, vy, +a,K)
1+y, V,hg(x, +d h, Z +b ,H)

fim Y2 Vs _fm—
b—e h h—o h
lim 224t VeV, v W R (X, )
h—o h 1+yﬂ'Vf(Xn=yn1)
That 1s;

vy =fx,.y,)
Hence the method 1s consistent.

Convergence: Adopting the numerical scheme (8) for
solving the IVPs mn (1) the method will be convergent, if
the numernical approximation yn+1 generated by 1t tends to
the exact solution y (x,,,) of the TVPs as the step size
tends to zero.

That 1s,

%1_1;2 [y(XnH)_yn-H]:O (57)

This property is investigated for the scheme here.

Let e,,, and T,., denote the discretization error and
truncation errors generated by (8), respectively. Adopting
binomial expansion and ignoring higher terms in Eq. 8 and
44 we obtain

Y(X, )=y )Y, (x,, y(x, ) h)+
ho, (x,, v(x,);h)+ (higherterms) + T1

(58)

where ¢, , |, and ¢, are continous functions in the

domain

anSb,M <oo,0<h<h,

Let ho, (x_.y(x,)kh) =W, K, (59)

ho, (x,.20x, ;)= V, H, = 2y, (x,.y(x, . by (60)
yo(x,)

where

W, (6,0, ) = (14y (e, ) by, HY) 0,6, yix, )iy (61)

Similarly Eq. 8 yields

Voo =Wy, (x,.y, 00+ hy (x,, v, h)+higher terms (62)
Subtract Eq. 58 from 62 and use Eq. 50 leads to

en+1 :en+ h[wz (Xn: Y(Xn): h)i(xn:yn;h)]+
he, (x, v(x,2:h) =, (x,,y,:h)]

(63)

By taking the absolute value on both sides of Eq. 63,
we have the inequality.

(64)

‘enﬂ‘é e +K_h‘en‘+hL‘en‘+T

Where 1. and K are the Lipschitz constants of the
functions.

O, (%, v; h) and yr,(x, y; h), respectively
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Let T=3Sup|T,, (65)
asxzh
By seting N=L+K (66)
Inequality (64) becomes
e, |< |eJA+hN)+T.n=0,1,2 (67)

From theorem in Lambert™ quoted without proof
states that 1f {e;, ] = o (1) nn} be sets of real number. Such
that the exist finite constants R and S

‘eJ‘SR ‘GJ_I‘JFS,j:O(l)H*l (68)

R -1

R-1

Adopting this theorem for the mequality (67), we
have

i < (69)

JR#1

}S+qu

(70)

+(1+hNY"

e,|

PLEER RSV
= hN

Since (1 +hN)" can be approximated by
(1+hN)" =™ ="

Where x, = nh, n = o (I)N and x, < bthenx,—a
< b —a. Consequently,

(71)

eN(x“) SeN(h—a)

e, <[

Considering Eq 58 and adopting first mean value
theorem

allb-=) _q

hN

(72)

JT+eN“’a) eD|

T, =hlwix, +6h, y(x, +6h) -y, (x,,¥(x,))

+h[o, (x, +6h, y(x, +6h)) -0, (x,;y(x,))]
W, (x, +6h, y(x, +6h) -y, (x, + 6h,y(x,))
Y (%, + Ohy (X, Dy (X, yix, ) _
+hd, (¢, +6h,y(x, +Bh) ¢, G, 0y G D |
O, (x, FOL X, D¢, (X, y(x, )

(73)
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By taking the absolute values of (73) into

consideration, we have

T:hL|y(xn +6h)—y(x, ) +jhze+h1<\y(xn)+eh—y(xn) +Mh'8
74
T=h'ONy' € )+(T+Mh’'0,x, <€ <x_, (75)

Where M and T are the partial derivatives of ¢, and
1, with respect to x, respectively.

Bysetting Q=]+ M (76)
and
Y=Sup Y! (x) a7
Therefore, Eq. 75 yield
T=h% (NY + Q) (78)
By substituting (18) into (72),we have
e, |<hBe™ P (NY +Q) +e" e, (79)

Assuming no error in the input data, that is, e, = 0,
then in the limit as h tends to zero, we obtain

limit |e,| =0

(80)
h—0
h—es
which implies from 30 that
limit ¥ =y(x
o YO &)
h—pee

Stability properties: As mentioned earlier that any error
introduced at any stage of the computation which is not
bounded can produced umnstable numerical results.
Therefore, we consider the stability analysis of the
proposed one-stage Implicit Rational R-K schemes in (11)
to access 1ts surtability.

To achieve this, we apply scheme (11) to stability
scalar test mtial value problem.

Y'=hy.y(x,)=Y, (82)
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The general one-stage scheme is of this form

Y. TWE (83)

Yon _1+yn Vl Hl

where,

K, =hf(x,+C h, y, +a, K)
Hl=hg(x, +d h Z, +b, H)

g,z ) =Z f(x,,y,) (84)

applying (83) to the stability test Hg. 82,we obtained the
recurrent relation

1+ W {1l-a,#)"
Yn+1: '11' ( = )_1 Yn (85)
1-VI (1+b, %)
By setting
T -1
M(ﬁ)—M (86)

1=V +b, A

For example, the associated stability function for
scheme (72) is

(=110 (87)
1-Yh

which is (1) Pade’s approximation to e" since
PRY=1+k+ Y B+ 08 K20
Also the numerical scheme (8) is convergent. If
|p (h)|<| analysis (87), we have that its interval of

A-stability 1s (-8, 0). This implies that the scheme 1s
A-stable.

Computer implementation and numerical computation: In
order to test for the performance of this scheme, we
computerised the formulas and implement them on a
microcomputer using sample problems and compare the
results with the conventional Runge-Kutta scheme of the
same order. of the form

yn+1 = yn + hkl (89)
where,

K, =hf (x_+h, y, + k) (80
Problem 1: Consider problem

yliyz,y(o):1,0<x <1 1)

whose theoretical solution 1s

y = 11—X (92)
The results are as shown in Table 1.
Problem 2: The initial value problem
y' =106 1,y (0) =1 3)
with exact solution
Y(x)=1+1ﬂoX (94)

The results are as shown in Table 2.

General discussion on the results of the treatment of
one-stage implicit rational R-K schemes: This section

discusses the outcome of the application of the

Table 1: Numerical results of problem one with one stage implicit rational runge- kutta schemes of order one and one stage classical r- k scheme of order one

One stage implicit

One stage implicit rational ~ One stage clagsical One stage classical

XN

Yexact

rational R-K scheme

R-K scheme error

R-K scheme

R-K scheme error

0.10000000D + 00
0.20000000D + 00
0.30000000D + 00
0.40000000D + 00
0.50000000D + 00
0.60000000D + 00
0.70000000D + 00
0.80000000D + 00
0.90000000D + 00
0.10000000D + 01

0.150000000D + 01
0.13333330D + 01
0.12500000D + 01
0.12000000D + 01
0.11666670D + 01
0.11428570D + 01
0.11250000D + 01
0.11111110D + 01
0.11200000D + 01
0.10800000D + 01

0.150000000D + 01
0.13000000D + 01
0.12500000D + 01
0.12000000D + 01
0.11500000D + 01
0.11390000D + 01
0.11249000D + 01
0.11100000D + 01
0.11200000D + 01
0.10800000D + 01

0.5000000D-06

0.33333334D-006
0.25000000D-04
0.20000000D-05
0.16666660D-06
0.14285720D-05
0.1250000D-04

0.11111100D-05
0.10000000D-04
0.909091 20D-06

0.14900000D + 01
0.12900000D + 01
0.12500000D + 01
0.12000000D + 01
0.11500000D + 01
0.11380000D + 01
0.11123000D + 01
0.11100000D + 01
0.11120000D + 01
0.10700000D + 01

0.49000000D-06
0.33293340D-06
0.24900000D-04
0.20000000D-05
0.16666659D-06
0.14285720D-05
0.11500000D-04
0.11111100D-05
0.10000000D-04
0.90909120D-06
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Table 2: Numerical results of problem two with one stage implicit rational ninge- kutta schemes of order two and two stage classical r- k scheme of order two

XN

Yexact

One stage implicit
rational R-K scherne

One stage implicit rational

R-K scheme error

One stage classical
R-K scheme

One stage classical
R-K scherme error

0.10000000D + 00
0.20000000D + 00
0.30000000D + 00
0.40000000D + 00
0.50000000D + 00
0.60000000D + 00
0.70000000D + 00
0.80000000D + 00
0.90000000D + 00
10000000D + 00

0.26887940D + 01
0.71173530D + 01
0.18987060D + 02
0.506256401D + 02
0.13473790D + 03
0.35977880D + 03
0.95951190D + 03
0.25573560D + 04
0.68189370D + 04
0.18183460D + 04

0.26675100D + 01
0.71179980D + 01
0.18985990D + 02
0.50621320D + 02
0.13494900D + 03
0.35975450D + 03
0.95913450D + 03
0.25573300D + 04
0.68189730D + 04
0.18183080D + 04

0.32986300D-03
0.79746630D-04
0.88909200D-04
0.40539000D-05
0.33481630D-05
0.45953600D-05
0.75879060D-06
0.35568170D-06
0.48182440D-04
0.38182080D-05

0.27093440D + 01
0.72297450D + 01
0.19283130D + 02
0.51411080D + 02
0.13705080D + 03
0.36536130D + 03
0.97409270D + 03
0.25972390D + 04
0.69254430D + 04
0.18467080D + 05

0.23404650D-03
0.70864100D-04
0.19206340D-04
0.51328770D-05
0.13691910D-05
0.36514290D-05
0.97374880D-06
0.25967260D-06
0.69247140D-04
0.18466080D-05

proposed scheme in solving the sample problems 1 and 2.
Table 1 and 2 show that the proposed scheme
compete favourably with the existing Implicit Classical
Runge-Kutta method of order 2. Moreso, one can deduce
from the results in the Table 1 and 2 that the result
converge and accurate. Also numerical computations and
comparative analysis with some standard methods show
that the new scheme 1s efficient and accurate.
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