oOnlline

8.

AN Journal of Engineering and Applied Sciences 2 (1): 17-29, 2007
© Medwell Journals, 2007

Implementation of Artificial Neural Network with Hidden Markov
Model for Analysing the Genetic Code

'C. Vijayalakshmi and k. Senthamarai Kannan
"Department of Mathematics, Sathyabama Institute of Science and
Technology Jeppiar Nagar, Chennai 600 119
“Department of statistics, Manonmainam Sundaranar University,
Tirunelveli, Tamil Nadu, India

Abstract: This study mainly deals with a general framework for Hidden Markov Models and Neural Networks
by using back propagation algorithm. Tn the training phase an efficient way of updating the weights of neurons
based on the relative entopy function 1s introduced, so that the network converges in a rapid manner.
Exponential gradient descent algorithim has been used for updating the weights of neurons in each iteration of
the training phase. Here the component of the gradient term appears in the exponent of a factor that is used
in updating the weight vector multiplicatively. A scaling factor is derived in which the hidden layer output is
linear which represents the total weight on hidden layer nodes. The numbers of ludden layer umts were also
varied for the various learming rates and the performance were marked. The efficiency and accuracy of learming
process greatly depends on the training algorithm used. An algorithm is designed in such a way that a new
weight update rule has been introduced. Exponentiated gradient descent weight update rate that substitutes
the existing gradient descent update rate of back propagation algorithm in which the results are faster and it
15 an efficient Markov learning network. The Hidden Newral Network can be viewed as an undirected
probabilistic model in which the study of the structure of the standard genetic code is analyzed.

Key words: Genetic code, scaling factor, DNA, RNA, hidden neurons, neural network, pattern recognition

INTRODUCTION

Inall areas of biological research, the role of Hidden
Markov Models have proved useful like protein modeling
and gene findings by Richard Durbin'!. With the advance
m technology of bio equipments like DNA sequences,
enormous amount of date 1s being generated. A
fundamental feature of chain molecules, which are
responsible for the functioning ad evolution of the
organisms, 1s that they can be cast in the form of digital
symbol sequences. The nucleotide and amino acid
monomers in DNA, RNA and protein are distinct and can
be represented as a set of symbols. Machine learning
technmiques are excellent for the task of discarding and
compacting redundant sequence information Pierre
Baldi®™. The training procedure superimposes sequences
upon one another in a way that transforms a complex
topology in the input sequence space into a simpler
representation.

Neural network approach does not require any
modeling between process parameters and the outputs are
process state variables. The network maps the input
domains with the output domains. The inputs are process

parameters and the outputs are process state variables.
Each process parameter or process state variable 1s called
feature. The combination of input and output constitutes
a pattern. Neural computing concepts were discussed
Morten. H¥, Simon Haykin®™, Philip D. Wasserman'
which forms the basis in order to have a general
framework.

Hidden markov model: Although the Hidden Markov
model is good at capturing the temporal nature of process,
it has very limited capacity for recognizing complex
patterns involving more than first order dependence 1n the
observed date. Multi-layer Perceptrons are of opposite in
this, we cannot model temporal phenomena, but complex
patterns recognized. Maximum likelihood
estimation 1s a discriminative traimng algorithm that aims
at maximizing the ability of the model to discrunmate
between different classes. In this paper let us analyze the
sequence of encoding for Multi-layer Feed Forward
network as it consists of hidden neurons by using
“CLASS HIDDEN MARKOV MODEL” to incorporate
neural network in a valid probabilistic way Fig. 1.

can be

Corresponding Author: C. Vijayalakshmi, Department of Mathematics, Sathyabama Institute of Science and Technology Jeppiar

Nagar, Chennai 600 119, India

J. Eng. Applied Sci., 2 (1): 17-29, 2007

Phases of operation

Learning the techinique Production

for the design of model

I I

Supervised Reinforcement Self organised
learning learning learning
Basic rules of learning
|
I I I I

Error correction Hebbian Competitive Boltzman

learning learning learning learning

Fig. 1: Hidden markov model design framework

Sequence encoding and output interpretation: A new
machine leaming technique is used because of their
ability to cope with non-linearities and to find more
complex correlation in sequence space. In a Multi layer
Perceptons the last hidden layer preceding the output
units should represent the transformed linear function in
a representable form. In many sequences analysis
problems the mput 18 often associated with a window of
size w, covering the relevant sequence segment. The
sequence analysis was discussed David W Mount! in
accordance with Genome Biological Analysis . For each
position in a window there are |A| different possible
monomers.

The space encoding scheme requires an input layer
of size |A| * w. The neural networks technique has the
potential to correlate the different mput values to each
other. The co-operativity of the weights that result from
training 1s supposed to mirror the relevant correlations
between the monomers in the mput which are again
correlated to the prediction task carried out by the
network. An artificial neural network is defined as a
massively parallel distributed process or that has a natural
propensity for storing experimental knowledge and make
1t available for use.

This is a typical Markov process in which knowledge
is acquired by modeling the temporal structure of date.
Inter neuron comnection strengths known as synaptic
weights or mterconnection weights are used to store the
knowledge.

The main application in which in neural network
approach computer programs are trained to be able to
recognize amino acid patterns that are located in known
secondary structures use of back propagation method to
predict protein structures Qian” and Michael™ which
resulted in 64% accuracy. Programming Techniques were
designed James A Freeman™ for neural network. Two

18

more successful methods are PHD and INPREDICT for
class Hidden Neural network. Tn prediction problems there
are two methods in which GRAIL II predicts encoded
protein sequences, constructs gene models, GENE PASER
predicts the most likely combination of exons and introns
in a genomic sequence by dynamic programming
approach.

Back propagation network: Multi-layer Feed Forward
network consists of many interconnected single layer
perceptrons and the flow of signal is allowed only in the
forward direction. An error back propagation algorithm is
based on the error correction learning rule.

Back propagation
Forward pass B
@) Input vector is applied @ S;:mk".”“ngi‘;mm
1o the sensory nodes of adjusted in accordance with
network layer by layer error correction rule
(ii) sypnaptic weights
Are fixed

The back propagation algorithm trains a neural
network using a gradient descent algorithm m which the
mean square error between the networl’s output and the
desired output is minimized by Hill"™. Cnce the error is
decreased, the network has converged and it 1s a Markov
Model training is achieved in each layer.

MULTILAYER FEED FORWARD NETWORK

From the above Fig. 2, the input and output values
along with the different types of layers, weighted matrices
are shown in which the multiplayer feed forward has three
distinctive characteristics:

+ The model of each neuron in the network includes a
non-linearity at the output end. The non-linearity 1s
smooth (i.e., differential everywhere), a. A commonly
used form of non-linearity that satisfies tlus
requirement is a sigmoidal activation function

defined by:

1

- 21
1+exp(—vj) @1

Yj

where v; is the net internal activity level of neuron j and y,
1s the output of the neuron. The presence of non-linearity
is important because, otherwise, the input-output relation
of the network is reduced to that of a single-layer
perceptron. Moreover, the use of the logistic function is
biologically 13 motivated, since it attempts to account for
the refractory phase of neural networks.

J. Eng. Applied Sci., 2 (1): 17-29, 2007

Input values

Output layer

Output values

Fig. 2: Multilayer feed forward network

* The network layers consist of one or more layers of
hidden neutrons that are not part of the mput or
output of the network. These hidden neurons enable
the networl to learn complex tasks by extracting
progressively more meaningful features from the
mput patterns (vectors).

¢ The network exhibits a high degree of connectivity,
determined by the synapses of the network. A
change in the connectivity of the network requires a
change 1n the population of synaptic connections or
their weights.

In this network, two kinds of signals are identified as
follows

Function signals: A function signal 1s an mput signal
(stimulus) that comes 1n at the input end of the network,
propagates forward (neuron-by-neuron) through the
network and emerges at the output end of the networl as
an output signal.

Error signals: An error signal originates at an output
neuron of the network and propagates backward (layer by
layer) through the network. We refer to it as an error
signal because its computation by every neuron of the
network involves an error dependent function in one form
or another.

Hidden layer: The output neurons constitute the output
layer and the mput neurons constitute the input layer of
the network. The remaining neurons constitute hidden
layers of the network. Thus the hidden units are not part
of the output or mput of the network-hence their
designation as hidden. The first hidden layer 1s fed from

the input layer made up of sensory units (source nodes);
the resulting outputs of the first hidden layer are in turn
applied to the next hidden layer; and so on for the rest of
the network. Each hidden or output neuron of a
multiplayer feed forward network is designed to perform
two computations:

» The computation of the function signal appearing at
the output of a neuron, which is expressed as a
continuous nonlinear function of the input signals
and synaptic, associated with that neuron

» The computation of an instantaneous estunate of the
gradient vector (i.e., the gradients of the error surface
with respect to the weights connected to the inputs
of a neuron), which 1s needed for the backward pass
through the network.

Rate of learning: The back propagation algorithm
provides an approximation to the trajectory m weight
space computed by the method of steepest descent. The
smaller we malce the learning rate parameter 1 the smaller
will the changes to the synaptic weights in the network be
from one iteration to the next and the smoother will be the
trajectory 1 weight space. This improvement however 1s
attained at the cost of slower rate of learning. Tf, on the
other hand, we make the leaming-rate parameter 1) to large
to speed up the rate of learming, the resultng large
changes m the synaptic weights assume such a form that
a network may become unstable (ie., oscillatory). In
deriving the back-propagation algorithm, it is assumed
that the learning parameter 1s a constant denoted by 7.

Convergence: The back propagation algorithm cannot, in
general, be shown to converge, nor there are well-defined
criteria for stopping their operation. Rather there are some
reasonable criteria. To formulate such a criteria, let us
assume the weight vector w* denote a minimum. A
necessary condition for w* to be the minimum is that the
gradient vector g(w) of the error surface with respect to
the weight vector w be zero at w=w*. Accordingly we
may formulate a sensible convergence criterion for back
propagation learning as the back propagation algorithm is
considered to have converged when the Euclidean norm

of the gradient vector reaches a sufficiently small gradient
threshold.

Summary of the back propagation algorithm
Initialization

Presentation of training examples

Forward computation: Leta training example inthe epoch
be denoted by [x(n)d(n)], with the input vector x(m)
applhed to the input layer of sensory nodes and the

J. Eng. Applied Sci., 2 (1): 17-29, 2007

desired response vector d(n) presented to the output
layer of computation nodes. Compute the activation
potentials and function signals of the network by
proceeding forward through the network, layer by layer.
The net internal activity level v," (n) for neuron j in layer
lis given by

v = 3wl v ey (22)
i=0

where y," is the functional signal of the neuron 1 in the
previous layer (l-1) at iteration n, w,” is the synaptic
weight of the neuron j 1 layer 1 fed from neuron 1 in layer
(1-1) and p mumber of neurons in the previous layer. For
1=0, we have y;"" and w,," (n) = 0 " (n) where 0 ¢ is the
threshold applied to the neuron j 1 layer 1. Assuming the
use of a logistic function for sigmoidal non-linearity, the
function (output) signal of neuron j in layer 1 is given by

M 1

= (23)
1+ exp(fvj (n))
The error signal 1s given by
ej(n)=d;(n)-o;(n) (2.4)

where d(n) is the j* element of the desired response
vector d{n) and

Backward computation: Compute the & ’s (the local
gradient) of the network by proceeding backward layer by
layer:

for neuron j in output layer L

8t =M tmo; 1~ 0;(n)] 5)

for neuron j in hidden layer 1

5}1)@1) - ygl)(n)[l - ygl) (n)]{, SEH)(H)W%H)(H) (2.6)

Feed forward phase computation: Let (x,, v,), (x,, v), ...,
(%, y,) represent the p vector-pairs used to train the
network where x, cR", y, £ R™. Assume a Back Propagation
Feed Forward Network with an input layer, output
layer and only one hidden layer. Consider an input vector
¥, = (¥,,,..., ¥X,,) be applied to the input layer of the network.
The nput units distribute the values to the hidden layer
units.

20

The net input to j* hidden unit is

ot (2.7

h h
nety; = Zw X
1
where ‘h’ superscript refers to the quantities on the
hidden layer, ", is the weight on connection from i® input
unit to the j"hidden unit and 8" is the bias term. Assume

that the activation of this node 15 equal to the net mnput,
then the output of this node is given by

iy =1} (netp;) (2.8)

The net input and output for the k* output node are

J

0%y =f2(netdy) (210)

where the superscript ‘o’ refers to the quantities in the
output layer and w'; is the weight on the connection
between the j* hidden unit and the k* output unit. The
loss at a single output unit is (y,-0,) where y, is the
desired cutput value and o, is the actual output value
from the k™ unit, for the p™ input. Let the loss minimized
by the exponentiated gradient algorithm be the sum of the
square of losses for all the output units.

2
Total Loss: L, = 1/2%(ypk —Opk) (2.11)

The weight changes are proportional to the exponent
of the gradient of L, in this algerithm. Calculate the
gradient of L, with respect to output layer weights:

Using Eq. 2.11 and chain rule for partial derivatives
we have

Lo oy 0] Pop Mk (919
Wiy peoe onet Bwﬂj
but
onety,
4 :lpj
Also simply writing
aopk
dnet

J. Eng. Applied Sci., 2 (1): 17-29, 2007

as ", in (2.12), we get

dL

2 b=~y — o i (et (213)
If the output function is linear, i.e., ", is linear
£ =1 (2.14)
If the output function is sigmoid, i.e.,
B2 (met$y) = (1+ ¢ "My, then
£ (et)= F2(1 - £2) =0y (1 - 0p) (215)
If the output function {7, is linear, then
dL _
P E = _(ka - Opk)lpj (21 6)

If the output function f°, is a sigmoid function, then

BL
awa

(2.17)

= ~(Ypk — Opk JOpi (1~ pi iy

Similarly calculate the gradient of E, with respect to
hidden layer weights:

oL IS Yok — 05)] dopk
E =1/2 - h P = _E(ka _Opk) ph
ji aWJI k aWJl

We see that,
oy depends on net’,, from (2.10),
net’, depends on i, from (2.9),
1, depends on net",, pj from (2.8),
net",, depends on w”, from (2.7).
Hence,

[: h
BL aOpk Bnetpk alpJ anetpj

E(—Opk) ,

(2.18)

From Eq. 2.10,

=1 (net
ane k (pk)

From Eq. 2.9,

dnet?
W
Pj
From Eq. 2.8,
Jipg fh (, ;
=f." (ne
Bnet - P
pi
From Eq. 2.7,
h
Bnetpj
P
J

Substituting the above values in Eq. (2.18), we get

dL
7[;1 = _% [(ypk

opi)Y (et Wiy (nethx, 1 (219)

In the hidden layer, if {, (net";) linear, then {* (net",) = 1
If f* (net",) is a sigmoid function then

h .
f (netm) pj(l—lpj)

Similarly in the output layer,
If %, (net”,) is linear, then {7, (net”,) =1
If £ (net”,) is a sigmoid function then

£ (netf,) =0, (1-0p)

If both the output functions are linear, then Eq. 2.19
becomes

dL,

=2l - (2:20)

0
aw Opk JWkiXp,]

If both the output functions are sigmoid functions,
then Eq. 2.19 becomes

0 Jopi (1= 0 Wi (11 %] 2.21)

p
= 2lyp —
awﬁll i

If hidden layer output function is linear and output
layer output function is a sigmoid function, then Eq. 2.19
becomes

o Sl
n - 2Upk
aWji k

OpicJopk (- op Wiy] (2:22)

J. Eng. Applied Sci., 2 (1): 17-29, 2007

Gradient descent algorithm: The convergence of
Gradient Descent Algorithm for Linear predictors have
been already discussed by Kivinen™*' and to obtain
such a compromise 18 to minimize a function
Uw) = (Wi, w) + 1 Ly, Wiy %) (3.1)
where the coefficient 1) > 0 is the importance given to
correctiveness relative to conservativeness.
The Gradient descent algorithm minimizes the
function
Uw) = diw W) LG wa) (32)
where d(w,,, w) = % |w., W]’ the squared Eucledian
distance, which is defined by 1/2(w,,-w,’ for all the
components of the weight vectors.
Therefore, we have dU(w)/dw = 0. Substituting
RH.S. of Eq. 3.2 n the above Eq. we have

/2wy —wil; +nlinwel=0 33

Substituting for the squared Euclidean distance in
the above Eq., we have

A1/ 20w, —w,) +ML{Y, Wy,)] =0 (3.4)

Differentiating the above equation with respect to “t”
W, we have

Wiy~ W MLy, W) =0 (3.5)
Rearranging the above equation, we have

Wiy =W ~ML(Y, Wiy) (3.:6)
Algorithm (GD))
Parameters:
L : aLoss function from RxR to [0, =),

s : astart vector in R" and
1 : alearmng rate in [0,).

Initialization: Before the first tnial, set w, =s.

Prediction: Upon receiving the t* instance x,, give the
prediction o, = W,. X,.

Update: Upon receiving the t* cutcome y, update the
weights according to the rule

22

Wi = W - T]L’yt(ot)

To determine the direction 1 which to change the
weights, we calculate the negative of the gradient of L,
with respect to the weights, w,;. Then, we can adjust the
values of the weights such that the total loss 1s reduced.
Thus, the gradient descent algorithm updates the weight
vector by subtracting from it the gradient L°,(o)
multiplied by the scalar 1. The GD algorithm can therefore
be seen as a straightforward application of the usual
gradient descent minimization method to the on-line
prediction problem.

Updating weights in the output layer: The weights on the
output layer nodes are updated using,

Iy 37)
oy,

WD = w0
Le.
Wit +1) = Wi (D (¥ — o B (et i, 38

For the linear output, we have

Wit +1) = wii(t) =Y —Op Jipi (3.9)

For the sigmoidal output, we have

Wi (t+ D = wi(h =y —0p Jopi (10)i (3.10)

Updating weights in the hidden layer: The weights on the
hidden layer nodes are updated using,

oL
whit+h=why-n—2 (3.11)
W..
n
ie.,
[(Ypk —Opi)} (metpy)
whit+) =wht)+n3 (3.12)

orh' h
k Wk_]f_] (netpj)xpl]

If both the output functions are linear, then Eq. 3.12
becomes

wii(t+1) =wh(t) +n§[(ypk —op WX, 1 (313)

J. Eng. Applied Sci., 2 (1): 17-29, 2007

If both the output functions are sigmoidal, then
Eq. 3.12 becomes

(5, ~ O)01 ~05)
Whtsn=whmy P PP G

kK Wiglgi (11505,]

If the hidden layer output function is linear and
output layer output function is sigmoidal, then equation
Eq. 3.12 becomes

[(¥pk —Opk JO
whsn=whainy (3.15)

k (1 - Opk)V"Tl(:jxp1]

EG algorithm: The EG algorithm results from using for d
the relative entropy, also known as Kullback-Leibler
divergence,

N .
d(w,s):ZWiln& (3.16)
i=1 EH

1

This assumes that all the components s, and w, are
positive and the constraints Y, s, = Y, w, = 1 are
maintained. The use of the relative entropy as a distance
measure 1s motivated by the Maximum Entropy Principle
of Jaynes and the more general Minimum Relative Entropy
Principle of Kullback. These fundamental principles have
many applications in Information Theory, Physics and
Economics. In particular with some distance measure, we
wish to guarantee the addition property Y %, w; =1 . This
18 done by the usual method of introducing a Lagrangian
multiplier y. Hence, instead of mmimizing U we mimmize
U defined by

Uw,7)=d(w,s)+ n(L{y,sx)+1,
N (3.17)
(s X)X (W —s))+ Y((%Wi) -1

Setting the N+1 partial derivatives of U to zero gives
us the Eq. 3.45

I(w,s)

+nL'y(s.x)xi+Y:0 (3.18)
i
for1=1, ..., N and the additional equation
N
3w, <1 (319)

Thus when the additional constraint ¥°_, w, =1 is
needed, we solve for1=1, ..., N the Eq. 4.18 and then apply
in Eq. 4.19 to obtain the value for v.

Consider now the relative entropy as the distance
measure, which requires the constraint Y, ;=Y ,w,= 1.

For this case, the Eq. 4.18 becomes

ln?+l+nL'y(s.x)xi+y:0 (3.20)
i
from which we obtain

w; =, exp(—nL'y(s.x)Xi -1-7 (3.21)
Hence, w; = s1, exp(-y-1) where

1, = exp(-m L'y (3.x)%;) (3.22)
Applying Eq. 4.19, we obtain

exp(~y 1) = (2= s~ (3.23)

i

Hence, the update rule 1s

Wi = il (3.24)

N
PIRSERY

Note that the update rule keeps the weights w,
positive if the weights s, are positive.

Algorithm (EGL(s,M))

Parameters:

L : a Loss function from R % R to [0,),

s : a start vector, with Y ", s, =1 and s, > = 0 for all i and
1 : a learming rate in [0, «).

Initialization: Before the first trial, set w, = s.

Prediction: Upon receiving the t* instance x,, give the
prediction o, = w,.x,.

Update: Upon receiving the t" outcome y, update the
weights according to the rule

o Wil

WiiLi =

_ Meilti (3.25)
Eszlwt,jrt,j

J. Eng. Applied Sci., 2 (1): 17-29, 2007

where

Wi ilt,i

it (3.26)
Tjm e it

Wi =

As the GD algorithm, the EG algorithm has a loss
function, start vector and a learming rate as its parameters.
In the update of EG, each weight is multiplied by a factor
1y, that according to (4.26) 1s obtained by exponentiating
the i” component

OL{yy, Wy %) —

3.27
v (3.27)

L'yt (W, XK

of the gradient of L(y, w,x,). After the multiplication, the
weights are normalized, as shown in Eq. 4.25, so that they
summ 18 equal to 1. The weights clearly never change sign.
Hence the weight vector w, of EG 1s always a probability
vector, i.e., it satisfies ¥, w,; = 1 and w,; >= 0 for all i.
Therefore, the prediction w,.x, is a weighted average of the
input variables x,; and w, gives the relative weights of the
components in this weighted average. This in contrast to
the GD algorithm, where also the total weight ||w/|, can
change. The fact that the weight vector is always a
probability vector clearly restricts the abilities of EG to
learn more general linear relationships. We shall soon see
how these restrictions can be avoided by a simmple
reduction.

EG= algorithm
Algorithm (EGEU 7 s7)m)

Parameters:

L. : a Loss function from R x R to [0, =),

U : the total weight of weight vectors, ™ and

s : a pair of start vectors in [0, 11", with Y, (s", +s7) and
1 : a learming rate 1n [0,).

Initialization: Before the first trial, set w', = Us™ and
w, = Us.
Prediction: Upon receiving the t* instance xt, give the

prediction o, = W,.X,.

Update: Upon receiving the t* cutcome y, update the
weights according to the rules

+ +
Wi,il,i

(3.28)

+ —
Wt+1,i =U N

+ + - -
LW T We il

24

Woa1ly;
Wt_+1,i -y N +t+j—,1 t,1 — (3_29)
AWt Wit
where
rtfi = exp(ﬂqULlyt ()] (3.30)
_ ' 1
1i; = exp(-NUL (0) = (331)

rt,l

The EGztalgorithm can best be understood as a way
to generalize the EG algorithm for more general weight
vectors by using a reduction. Given a trial sequence 3,
let S° be a modified trial sequence obtained from 3 by
replacing each instance x, by x"=(Ux,, ..., Ux,, -Ux,, ..., -
Ux,). Hence, the number of dimensions 1s doubled. For
a start vector pair (57, 87) for EG+, lets = (s*,..., 8", 87,
s7). Consider using EG= (U,(s*,5),7) on a trial sequence
S and using EG(s,1) on the trial sequence 3°. If we let W',
be the t* weight vector of EG (s,n) on the trial sequence
5, soit is easy to see that Uw', = (w', ..., W'y, W ..., W)
holds for all t and, therefore, W. X!, = (W', - WX,
Hence, the predictions of EG+ on S and EG on S° are
identical, so HG=is a result of applying a simple
transformation to EG. This transformation leads to an
algorithm that in effect uses a weight vector W°-W7,
which can contain negative components. Further by
using the scaling factor U, we can make the weight
vector W*-W', range over all vectors W € R for which
W], <=U. Although |W*,| + W], is always exactly U,
vectors W-W, with |W TW | <Usimply result from
having both w*,;>0 and w0 for some 1. The parameters
of EGx are a loss function L, a scaling factor U, a pair
{(s", s of start vectors in [0, 1] with Y "_ (s, +s,) and a
learning rate 7).

Updating weights in the output layer: The weights on the
output layer nodes are update using,

Wit 1) = Wi (E+ D — Wil (t+ 1) (3.32)
where
50 (w2 (1)

W;-io (t+)=U +o k{ro kJfo -0 (3.33)

2l (w8 + 13" (H)wa " (0]

i
s

Mot (334)

rlzgo (th=e

J. Eng. Applied Sci., 2 (1): 17-29, 2007

~UNY (Yoo i ety Yig] 3.35
B(ti=e * 33
Similarly,
~Un aLp
. w1 3.36
i (h=e 9 =—3 336
i (£
le,
UnEK[(ypkfopk)flg‘(net;k)ipj] (3.37)

§°(h=e

If the output function is linear, then from (3.14) we
have

—UN Y[g O iy]

338
rlz'j‘)(t) e & (3.38)

If the output function is sigmoidal, then from (3.15)
we have

—UN D (=05 0 (1=05)iy 1

e 2 (3.39)

i (Dwyg (1)
25" (0w (0 + 55" (Owg (1]

(3.40)

Wil(t+1)=U

In the Eq. 3.33 and 3.40, U is the scaling factor
representing the total weight on output layer nodes. In
the weight updating formulas above, we can note that the
component of gradient appears in the exponent of the
factor that multiplies the weight values.

Updating the weights in the hidden layer: The weights on
the hidden layer nodes are updated using,

h h —h

whit+)= whlt+ 1) - wil e +1) (3.41)
where

+h v th

Wit D =U——— i h(t)wii (1? ___ (342)
Tt Owit o+ ow o]
a,

Un—=. (3.43)

+h o
rji (t) =€ !

25

() = e—unzk[(ypk—opk)f,f'(net;k Wit et)z, 1 (3.44)
1
Similarly,
o e
rht=e naw?i 1 (3.45)
n - T _+h
i (t)
1e.,
1) = @ M2l G op Y (e et x, T (3.46)
il -

If both the output functions are linear, then from
Eq. 3.14 we have

ety = Mmoo] (347)

If both the output functions are sigmoidal, then from
Eq. 3.15 we have

(1) = o2 [k 0 o (=0 Iwiiy (1-ip %, 1 (3.48)

If the hidden layer output 1s linear and the output
layer output 1s sigmoeidal, then from Eq. 3.16 we have

r};h (t) = e—uﬂzk[(ypk — 05 10 (=0 Jwigx,, 1 (3.49)

i (w3 ()

(3.50)
Sl W+ gt (Owg (1)]

h
Wi (t+1)=U

In the Eq. 3.42 and 3.50, U is the scaling factor
representing the total weight on lndden layer nodes.

Experimental verification

BPN simulator: A customized Back Propagation Network
(BPN) simulator was newly coded i C to test and
benchmark the Gradient Descent and Exponentiated
Gradient Descent versions of the algorithms. A three layer
BPN was constructed, constituting the input layer, hidden
layer and the output layer. In tlus network model, the
input units are fan-out processors only. That 1s, the umits
in the input layer perform no data conversion on the
network input pattern. They simply act to hold the
components of the input vector within the network
structure. Thus, the traming process begins when an
externally provided input pattern is applied to the input
layer of units. Forward signal propagation then occurs.
Once an output has been calculated for every umt in the
network, the values computed for the umnits in the output

J. Eng. Applied Sci., 2 (1): 17-29, 2007

layer are compared to the desired output pattern, element
by element. At each output unit, an error value is
calculated. These error terms are then fed back to all other
units m the network structure and their commection
weights are changed by using the respective weight
updation formulas. Several assumptions have been
mcorporated into the design of this simulator. First, the
output function on all hidden-layer and output-layer units
is assumed to be the sigmoidal function. This assumption
imply the need to store weight updates at one iteration,
for use on the next iteration. Second, the bias values have
not been included n the calculations. In a BPN, signals
flow bi-directionally, but in only one direction at a time.
During training, there are two types of signals present in
the network: during the first half-cycle, modulated output
signals flow from output layer to mput layer. In the
production mode, only the feed forward, modulated
output signal is utilized. The program has been written in
such a way to run either i the learming (training) phase or
1 the production (testing) phase.

Data structures for GD and EGD:

record BPN =
InputLayer : LAYER* { locate input layer umts }
OutputLayer : LAYER* {locate output layer units }
HiddenLayer : LAYER™ {locate hidden layer units }
Eta : float { learing rate }

end record,

record LAYEREGD =
Units : integer { number of units in the layer }
Netlnput : float* { locate input array }
Output : float* { locate output array }
Weight : float** { locate connection weights }

end LAYER,

record LAYERGD =
Units : mteger { number of units in the layer }
NetInput : float* { locate input array}
Output : float* { locate output array }
Weight : float** { locate connection weights }
Wplus : float** { store W+ vector values }
Wminus : float** { store W- vector values }
U float { total weight of weight vectors }

end LAYER,

Network parameters <

Weights and learning parameters: Weights should be
mitialized to small, random values-say between +0.5-as
should the bias terms, 0, that appear in the equations for
the net input to a unit. Ttis common practice to treat this

Training data

Wetworl size

26

bias value as another weight, which is connected to a
fictious unit that always has an output of 1.

L
o _ 0: o
Iletpk = %ijlpj + ek
j=

By making the definitions, 6 = w',.., and 4., = 1,
We can write

o L+1 o
Hetpk = Ei Wk_llp_]
i=

15 treated just like a weight and it participates in the
learning process as a weight. Another possibility is to
remove the bias terms altogether and their use 1s optional.

Selection of a value for the leamning rate parameter, 1),
has a significant effect on the network performance.
Usually, 1) must be a small number-on the order of 0.05 to
0.25-to ensure that the network will settle to a solution. A
small value of 1 means that the network has to make a
large number of iterations. It 13 often possible to increase
the size of 1 as learming proceeds. Increasing 1) as the
network ermror decreases will often help to speed
convergence by increasing the step size as the error
reaches a mimmum, but the network may bounce around
too far from the actual minimum value if 1 gets too large.

Standard genetic code: The newral network model of the
Genetic code is strongly correlated to GES scale of Amino
Acid Transfer Free Energies Tolstrup?. In the neural
network approach to studying the structure of the
standard genetic code, the analysis 1s new and special in
that it is unbiased and completely data driven. The neural
network infers the structure directly from the mapping
between the codons and amino acids as it is given in the
standard genetic code. In the network that learns the
genetic code, the input layer receives a nucleotide triplet
and the output corresponds to the amino acid. Thus the
6l different triplets are possible as input and 20 different
amino acid are possible as output. Here the triplets for the
start and stop codons are ignored, hence 61 and not 64.
The network has 12 input umits, two or more hidden units
and 20 output units.

The wnput layer encoded the nucleotide triplets as
binary string comprising 3 blocks of 4 bits, with adenine
as 0001, cytosine as 0010, guanine as 0100 and uracil as
1000. The output layer encoded the amino acid as a
binary string of 20 bits. During the training the criterion
for successful learning was that the activity of the
corresponding output umt should be larger than the
others. In each training epoch the codons were presented
to the network n the random order Fig. 3.

J. Eng. Applied Sci., 2 (1): 17-29, 2007

Fig. 3: Neural network trained to learn standard genetic
code

A powerful way to have a low classification error was
to have an adaptive training set, where the training
examples are included and excluded after determining
whether they are classified correctly by the current
network. Such a scheme may introduce more noise in the
learning process, which helps to avoid the local minima.
Introducing the noise in the traimng is usually done by
updating the network after each example rather than each
epoch.

Table 1: Standard genetic code-data mapping

A network with two hidden units was successfully
trained. The leaming was varied from 0.1 to 0.01 during
different trials. The value of the network parameter U was
heunistically assumed to be 70 for the lndden units and 40
for the output units. The Net Loss or Error was assumed
to be a constant 0.001. There were 12 units m the nput
layer and 20 umits m the output layer. All the data were
feed in the binary format and the output too was encoded
in the binary format making it a sparse dataset, making it
highly suitable for the Exponentiated Gradient Descent
weight update rule.

RESULTS AND DISCUSSION

The above mentioned problem was tested against the
Gradient weight update rule and the
Exponentiated Gradient Descent weight update. It can be
observed from Table 1 and Table 2 that the experunental
data were used and the data mapping was done by using
the Standard Genetic code by giving the inputs as listed
in the column and the corresponding output is obtained.

Descent

Triplet Input AA AA (svym) AA (val) Output

uuu 100010001000 Phe F 5 00001000000000000000
uuc 100010000010 Phe F 5 00001000000000000000
TUA 10001 0000001 Leu L 10 00000000010000000000
uuG 100010000100 Leu L 10 00000000010000000000
ucu 100000101000 Ser S 16 00000000000000010000
uccC 100000100010 Ser S 16 00000000000000010000
UCA 100000100001 Ser s 16 00000000000000010000
ucG 100000100100 Ser s 16 00000000000000010000
TAU 100000011000 Tyr Y 20 00000000000000000001
UAC 100000010010 Tyr Y 20 00000000000000000001
UAA 100000010001 Sto NA NA NA

UAG 100000010100 Sto NA NA NA

UGuU 100001001000 Cys C 2 01000000000000000000
uGc 100001000010 Cys C 2 01000000000000000000
UGA 100001000001 Sto NA NA NA

UGG 100001000100 Trp W 19 00000000000000000010
cuu 001010001000 Leu L 10 00000000010000000000
cucC 001010000010 Leu L 10 00000000010000000000
CUA 001010000001 Leu L 10 00000000010000000000
cuG 001010000100 Leu L 10 00000000010000000000
cCcu 001000101000 Pro P 13 00000000000010000000
CCC 001000100010 Pro P 13 00000000000010000000
CCA 001000100001 Pro P 13 00000000000010000000
CCG 001000100100 Pro P 13 00000000000010000000
CAU 001000011000 His H 7 00000010000000000000
CAC 001000010010 His H 7 00000010000000000000
CAA 001000010001 Gln Q 14 00000000000001000000
CAG 001000010100 Gln Q 14 00000000000001000000
CcGuU 001001001000 Arg R 15 000000000000001 00000
CGC 001001000010 Arg R 15 000000000000001 00000
CGA 001001000001 Arg R 15 000000000000001 00000
CGG 001001000100 Arg R 15 000000000000001 00000
AUU 000110001000 Tle 1 8 00000001000000000000
AUC 000110000010 Ile I 8 00000001000000000000
AUA 000110000001 Ile I 8 00000001000000000000
AUG 000110000100 Sta NA NA NA

ACU 000100101000 Thr T 17 00000000000000001000
ACC 000100100010 Thr T 17 00000000000000001000

27

Table 2: Standard genetic code-data mapping contd

J. Eng. Applied Sci., 2 (1): 17-29, 2007

Triplet Input AA AA (sym) AA (val) Output
ACA 000100100001 Thr T 17 00000000000000001000
ACG 000100100100 Thr T 17 00000000000000001000
AAU 000100011000 Asn N 12 000000000001 00000000
AAC 000100010010 Asn N 12 000000000001 00000000
AAA 000100010001 Lys K 9 000000001 00000000000
AAG 000100010100 Lys K 9 000000001 00000000000
AGU 000101001000 Ser K} 16 00000000000000010000
AGC 000101000010 Ser K} 16 00000000000000010000
AGA 000101000001 Arg R 15 000000000000001 00000
AGG 000101000100 Arg R 15 000000000000001 00000
GuLuI 010010001000 Val v 18 00000000000000000100
Guc 010010000010 Val v 18 00000000000000000100
GUA 010010000001 Val v 18 00000000000000000100
GUG 010010000100 Val v 18 00000000000000000100
GCU 010000101000 Ala A 1 10000000000000000000
GCC 010000100010 Ala A 1 10000000000000000000
GCA 010000100001 Ala A 1 10000000000000000000
GCG 010000100100 Ala A 1 10000000000000000000
GAU 010000011000 Asp D 3 001 00000000000000000
GAC 010000010010 Asp D 3 001 00000000000000000
GAA 010000010001 Glu E 4 0001 0000000000000000
GAG 010000010100 Glu E 4 0001 0000000000000000
GGU 010001001000 Gly G 4] 000001 00000000000000
GGC 010001000010 Gly G 4] 000001 00000000000000
GGA 010001000001 Gly G 4] 000001 00000000000000
GGG 010001000100 Gly G 4] 000001 00000000000000
The dataset used was a sparse target vector (a input Table 3:NET loss for GD and EGD
vector mostly represented by zeros). The learming rate leration GID oD Neration _Gif3 BGD
¥ rep Y) = 10 0.8149 0.2347 170 0.3664 0.0053
parameter was changed constantly in increments of 0.01 20 0.6199 0.1934 180 0.3647 0.0045
: 30 0.5134 0.1670 190 0.3630 0.0039
and the perfommce of the qetwork was mom.tored. The 10 05741 0.1280 200 0.3613 0.0031
number of ludden layer units were also varied for the 50 0.4269 0.0973 210 0.3597 0.0030
; ; 60 0.4091 0.0894 220 0.3581 0.0027
various lganung rgtes and the performance of the networlk o 0308 0.0840 30 03565 00025
was momtored. Finally the value of the parameter U of the 80 0.3909 0.0746 240 0.3549 0.0023
Exponentiated Gradient Descent weight update rule was 0 03858 0.0642 250 0.3533 0.0021
. . . . 100 0.3819 0.0553 260 0.3518 0.0019
varied to obtain an optimal results. The numerical values 110 0.3788 0.0466 270 0.3502 0.0018
thus obtained are listed in Appendix A. }gg gg;g; 8 8?22 ;gg 8 gjﬁf ggg}g
Tt is observed from Table 3 that the number of 140 0:3719 0:0116 300 0:3455 0:0015
iterations taken by the network with Exponentiated 150 0.3699 0.0084 310 0.3440 0.0015
. . 160 0.3681 0.0065 320 0.3425 0.0014
Gradient Descent weight update rule, to converge for the
given sparse dataset 15 far less when compared to the Table 4: Gradient descent algorithm-results
network with Gradient Descent weight up date rule. From Learning rate Execution time No. of iterations Predictability
. . . . 0.01 180.05 100602 1
Table 4 it can be noted that the execution time is reduced 0.015 120,10 67149 1
and the predictability is constant invariant of the number ~ 0.02 90.27 50422 1
. . . 0.025 72.30 40387 1
of iterations. Tt is found from Table 5 that the 003 6016 33605 1
proportionally the execution time taken for the network 1s 0.035 5164 28914 1
- " 0.04 45.27 25330 1
also redl.lced. But one n.otablc.a feature is th.at as addltlgnal 0.045 401 31530 1
calculations are required in Exponentiated Gradient — 0.05 36.30 20308 1
: : : : 0.055 32.95 18481 1
Descent welght. update rule, the time red.uctlon 18 onl.y by e 01 16957 1
a factor. The time taken for one epoch in Exponentiated 0.065 27.96 15668 1
Gradient weight update rule is not equal to the time taken %97 22.98 14562 1
S . P . q . 0.075 24.23 13608 1
for one epoch in Gradient Descent weight update rule. 0.08 2274 12769 1
The accuracy of the network or the predictability of the g-ggS %(1)‘2? ﬁgé‘; }
network also remains a constant for the various learning 0.095 1223 10778 1
0.10 1818 10248 1

rates. The net loss or the net error value also drastically

28

J. Eng. Applied Sci., 2 (1): 17-29, 2007

Table 5 Exponentiated Gradient Descent Algorithm-Results

Learning rate Execution time No. of iterations Predictability
0.01 3.02 320 1
0.015 1.97 200 1
0.02 1.37 137 1
0.025 1.31 137 1
0.03 1.09 123 0.9
0.035 0.54 59 0.8
0.04 0.54 55 0.8
0.045 0.60 58 0.8
0.05 0.32 36 0.8
0.055 0.38 41 0.8
0.06 0.32 38 0.8
0.065 0.76 90 0.9
0.07 0.65 66 0.6
0.075 0.82 98 0.9
0.08 0.65 68 0.8
0.085 0.82 101 0.5
0.10 1.48 175 0.5

reduces n the Exponentiated Gradient Descent weight
update rule, which 13 the major factor in reducing the
execution time for the training of any network.

CONCLUSION

Back propagation algorithm has been a major driving
force in the field of bioinformatics in the past two
decades. Although many new algorithms like Recurrent
feed forward networks, Hopfield Networks, Boltzman
networks, Genetic Algorithms and Support Vector
machines are mntroduced, backpropagation algorithm has
displayed its robustness over the years. Most of the
secondary structure prediction and gene prediction still
problems rely on backpropagation algorithm. A new
machine learmng method has been proposed which would
have a wider impact on the huge range of problems in
biomformatics that use backpropagation algorithm. In the
proposed algorithm a new weight update rule has been
imtroduced Exponentiated Gradient Descent weight
update rule that substitutes the existing Gradient Descent
weight update rule of the backpropagation algorithm.

All the problems m the field of Bio-Informatics deals
with diverse set of data, these data most often have a
sparse or binary representation as binary sequences for
a easy encoding and decoding scheme. The proposed
algorithm has been proved perform well on any given
sparse dataset. The effectiveness of the new weight
update rule on the backpropagation algorithm has been
demonstrated by its performance in pattern recogmtion
problem. Moreover the rate of convergence of the
network has been greatly reduced, resulting in a faster
and an efficient learning network.

Some of the open issues that may be dealt in the
future are

* Applying the new Exponentiated Gradient Descent
weilght update rule on a wider range of problems.

20

10.

11.

12.

13.

Using the new rule for large-scale genome analysis,
as this consumes more time.

A statistical analysis of the prediction by the new
algorithm has to be carried out.

Improving the predictability of the algorithm for non-
sparse target vectors 1.e., when data 1s feed mn decimal
form and not in binary form.

REFERENCES

Richard Durbin et af., 1988. Biological sequence
analysis, Cambridge University Press.

Pierre Baldi, Soren Brunak and Bicinformatics, 2001.
The machine learning approach, MIT Press.
Aleksander, I. and H. Morton, 1990. An Introduction
to Neural Computing, Chapman and Hall, London.
1994, Neural Networks: A

Comprehensive Foundation, Macmillan Publishing

Simon Haykin,

Company, New Jersey.

David W. Mount, 2001. Bicinformatics: Sequence and
Genome Analysis, Cold Spring Harbor Laboratory
Press.

Qian, N. and T.J. Senowski, 1988. Predicting the
secondary structure of globular proteins using neural
network models, J. Mol. Biol., 202: 865-884.
Michale 1995,
computational Biology, Chapman and Hall.

Michael T.E. Sternberg, 1996. Protien Structure
Prediction, Oxford University Press.

James A. Freeman and David M. Skapura, 1991.
Neural Networks: Algorithms, Applications and

S, Watermarn, Introduction to

Programming Techniques, Addison Wesley.

Hill, 5.1 and R.C. Williamsen, 2001 . Convergence of
Exponentiated Gradient Algorithms, TEEE Trans.
Signal Processing, 49: 1208-1215.

Kivinen, J. and M.K. Warmuth, 1997. Additive versus
Exponentiated Gradient Descent for Linear Predicorts,
Inform. Comput., 132: 1-64.

Kivinen, J. and M.K. Warmuth, 1994. Exponentiated
Gradient Versus Gradient Updates for Linear
Predictions, Technical Report UCSC-CRIL-94-16,
University of California, TUSA.

Tolstrup, N., J. Toftgard, J. Englebrecht and
S. Brunak, 1994. Neural Network Model of the Genetic
Code 1s Strongly Correlated to the GES Scale of
Amino Acid Transfer Free Energies. . Mol. Biol.,
243: 816-820.

