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Abstract: In this study, we correct the model of Chang that discussed with the Economic Order Quantity (EOQ)
under conditions of cash discount and payment delay. In addition, we try to use different method from Chang
for obtaiming optimal cycle time under cash discount and payment delay so that the ammual total cost 1s
mimmized. This study provides an algebraic approach to determine the optimal cycle time. This approach
provides one theorem to efficiently determine the optimal cycle time. Finally, numerical examples are solved to
illustrate the results that may cause significant errors and penalties using wrong model when the cash discount
rate 18 larger and the managerial insights from these numerical examples and sensitivity analysis are also

obtained.
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INTRODUCTION

The traditional Economic Order Quantity (EOQ)
model assumes that the retailer’s capital is unconstrained
and the retailer must be paid for the items as soon as the
items are received. In practice, the supplier frequently
offers the retailer a fixed delay period, that is the trade
credit period, in settling the accounts. Before the end of
trade credit peried, the retailer can sell the goods and
accumulate revenue and earn interest. A higher interest s
charged 1if the payment 1s not settled by the end of trade
credit period. In real world, the supplier often makes use
of this policy to promote his commodities.

Goyal! established a single-item inventory model
under permissible delay in payments. Chung™® developed
an alternative approach to determine the economic order
quantity under condition of permissible delay in
payments. Aggarwal and Jaggi™ considered the inventory
model with an exponential deterioration rate under the
condition of permissible delay in payments. Chang et al.l!
extended this issue to varying rates of deterioration.
Liao et alP? investigated this topic in the presence of
inflation. Jamal et al"” and Chang and Dye™ extended this
issue with allowable shortage. Chang et al.” extended
this issue with linear trend demand. Hwang and Shirm!™”
modeled an mventory system for retailer’s pricing and lot
sizing policy for exponentially deteriorating products

under the condition of permissible delay in payment.
Jamal et a/."" and Sarker et a/"? addressed the optimal
payment time under permissible delay in payment with
deterioration. Teng!? assumed that the selling price is not
equal to the purchasing price to modify Goyal’s model'l.
Shinm and Hwang'"" determined the retailer’s optimal price
and order size simultaneously under the condition of
order-size-dependent delay mn payments. They assumed
that the length of the credit period 15 a function of the
retailer’s order size and also the demand rate 1s a function
of the selling price. Chung and Huang™ examined this
problem within the EPQ framework and developed an
efficient procedure to determme the retailer’s optimal
ordering pelicy. Huang!"” extended this issue under two
levels of trade credit and developed an efficient solution
procedure to determine the optimal lot-sizing policy of the
retailer. Huang and Chung et al!™! to cash discount
policy for early payment. Chang ef /"™ and Chung and
Liao™ investigated the problem of determining the
economic order quantity for exponentially deteriorating
items under permissible delay in payments depending on
the ordering quantity. Huang™ investigated that the unit
selling price and the unit purchasing price are not
necessarily equal within the EPQ framework under
supplier’s trade credit policy.

Therefore, it makes econocmic sense for the retailer to
delay the settlement of the replenishment account up to
the last moment of the permissible period allowed by the
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supplier. From the viewpoint of the supplier, the supplier
hopes that the payment 1s paid from retailer as soon as
possible. Tt can avoid the possibility of resulting in bad
debt. So, in most business transactions, the supplier will
not only offer the fixed period to settle the account but
also may allow a cash discount to encourage the retailer
to pay for his/her purchasing cost as soon as possible.
The retailer can obtamn the cash discount when the
payment is paid within cash discount period offered by
the supplier. Otherwise, the retailer will pay full payment
within the trade credit period In general, the cash
discount period is shorter than the trade credit period.
Many articles related to the inventory policy under cash
discount and payment delay can be found in Chang™,
Ouyang et al 44,

The purpose of this study is to correct the model of
Chang™ discussed with the EOQ under conditions of
cash discount and payment delay. In addition, we try to
use different method from Chang™ for obtaining the
optimal cycle time so that the amnual total cost is
minimized This study provides an algebraic approach to
determine the optimal cycle time. In previous most
published papers that have been derived using differential
calculus to find the optimal selution and to prove
optimality condition with second-order derivatives. In
recent papers, Grubbstrom and Erdem™ and Cérdenas-
Barrén® showed that the formulae for the EQQ and EPQ
with backlogging can be derived without differential
calculus. Yang and Wee™ developed algebraically the
optimal replenishment policy of the integrated vendor-
buyer inventory system without using differential
caleulus. Wu and Cuyang®™ modify Yang and Wee to
allow shortages using algebraic method. Tn this study, we
provide one theorem to efficiently determine the optimal
cycle time. Finally, numerical examples are solved to
llustrate the results that may cause sigmificant errors and
penalties using wrong model when the cash discount rate
1s larger and the managerial insights from these numerical
examples and sensitivity analysis are also obtained.

MODEL FORMULATION

The same notation and assumptions as in Chang™"

are used.

Notation

D = Annual demand

S = Cost of placing one order

¢ = Umt purchasing price per item

P = Unit selling price per item

h = Unit stock holding cost per item per year

excluding interest charges

T, = Annual interest rate that can be earned

L = Amnual mterest charges for inventory item
r = (Cash discountrate, 0 <r<1

M, = The period of cash discount in years

M, = The period of trade credit in years, M, < M,
T = The cycle time in years

Z(T) = The annual total variable cost in Chang™"
TVC(T)= The annual total cost in this study

T* = The optimal cycle time of TVC(T)
Assumptions

*  Demand rate is known and constant.

»  Shortages are not allowed.

*  Replenishment is instantaneous.

»  Time horizon 1s infinite.

o s>=c¢l =1,

»  During the time the account is not settled, generated
sale revenue is deposited in an interest-bearing
account. At the end of this period, the retailer pays
units sold, keeps profits and starts paying the higher
interest charges on the items in stock.

Algebraic modeling: However, we want to correct the
term of the interest payable per unit time in Case lin
Chang®!. Since the supplier offers cash discount if
payment is paid within M,. Therefore, in this case, the
retailer will pay the anmual purchasing cost, ¢(1-1)D, to the
supplier. Then, the annual cost of interest charges for the
items kept in stock 1s based on the amnual purchasing
cost, ¢(1-1)D. So, we change the interest payable per unit
time in Case 1 in Chang™.

eDI(T - M, ) 1o S0 =TIDI (T — M, Y
2T 2T '

Therefore, the annual total cost functions 1s as fellows.
Annual total cost = ordering cost + stock-holding
cost + purchasing cost + interest payable-interest eamed.
Then, we rewrite four annual total variable cost
functions, Z,(T) fori=1, 2, 3 and 4, in Chang™ to TVC(T)
fori1=1, 2, 3 and 4 as follows.

. c(1-1)I D(T — M,y

TVC,(T) :%+ h'%+ ¢(1-1)D

2T (1)
2
_% if T>M,,
2T
TVC,(T)= E+ hll+ c(l-D—
T 2 (2)

pl,D(M, —g) if T<M,,
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TVC,(T) :%+ h'%+ c(1—r)D - pl,D(M, - E)

B 2
Tveymy =5 4 BT oy DT M, )
i T 2T (3)
DML it T2M, D(h+pl )| 28
= Pladipay + Dle(1-1)—pM,1,]
2T | Deh+ply)

2T

and
_Dh+pi)|. ’ s |
= 7T D(h+p1d)} +{,f28D(h+pId)+(8)

TVC4(T):%+h'%T+chpIdD(MZ 75) if T<M,.(# o T
Dle(1-1)—pMI,]}.

AtT =M, we find TVC,(M,) = TVC,(M,). And at
Equation 8 represents that the minimum of TVC,(T)
is obtained when the quadratic non-negative term,

T =M, we find TVC,(M,) = TVC,(M,).
depending on T, is made equal to zero. Therefore, the

Then, we can rewrite
optimum value T,* is

TVCI(T):E+ h‘l+ c(l-1D+
T 2
e 2 (9)
D(h+ply)

¢(1-0)l DIT-M;)*  pI,DM,’
2T 2T

Therefore, Eq. 8 has a minimum value for the optimal
} + value of T,* reducing TVC,(T) to

TVC,(T,*) = J28D(h + pI,) + Dle( - 1) - pM,1,]. (10}

Likewise, we can derive TVC,(T) algebraically as

2
28+ DM, *[e(1-1)1, —pl,]
- follows.

T2, 28+ DM, *[e(1 -1, —pl,]
Dlh+c(1-1)1.]

_Dlh+e(l-1)1,]
B 2T

cDA-1r)(1-M1)

_ Dh+c(l-1) ]
B 2T

Dh+e(l-1)I,]
oI.D(T-M,)* pI,DM,*

2T 2T

3  hDT
T\/’Cz(T):¥+—2 +cD+

{ ’D h+ C( —]) " {2S+ )Ml [C(l I)Ic I:Id]} (5)
25 DIVIZ (CIc pId) ( c)-f—C]:)(l—l\/j[ I )
+ 2e

2T

cD(1-r)(1-M,I_)}.

Equation 5 represents that the minimum of TVC,(T)
is obtained when the quadratic non-negative term,
depending on T, is made equal to zero. Therefore, the

_Drel)| ML
+CC

2
{28+ DM, (eI, —pl,)
2T

optimum value T * 15

+{yfDih + eI )28 + DM (el —pI )] +eD(1 - M,1 )3 {11

« 1284 DM ’[c(1-0)I —pl].
E _\/ Dlhtol-nl] o (6)

28+ DM, ’[e(1-1)I, - pI,]> 0. , .
e =l =pl] Equation 11 represents that the minimum of TVC,(T)

15 obtained when the quadratic non-negative term,

depending on T, i1s made equal to zero. Therefore, the

Therefore, Eq. 5 has a minimum value for the optimal
optimum value T,* is

value of T,* reducing TVC,(T) to

TV, (Tj*) = 2]
@ T _\/2S+ %\éﬁ(‘;?) Pla) i 55 DM2(el, —pL,) > 0.
(12)

JDIh+ o1 -1, 1§28 + DM, 2[e(1 1)1, —pl, ]} +

cD(1-r)(1-MI).
Therefore, Eq. (11) has a mimmum value for the

Similarly, we can derive TVC,(T) without derivatives
optimal value of T,* reducing TVCy(T) to

as follows.
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TVC,(T,*) =4/ D(h + oI, )[28 + DM, (cl, - pI)] + (13)
eD(1- M,1,).

And Last, we also derive TVC,(T) without derivatives
as follows.

TVC,(T)= %+ h'%+ ¢D —pI DM, fg)

_Dhply)| ., 28
T | D(h+pl,)

]*’ Dic—pM,ly)

CDh+pl[ s
o \JD(h+p1d)}+[“2SD(h+PId)+(14)

D(c —pM,I,)].

Equation 14 represents that the mmimum of TVC,(T)
15 obtaned when the quadratic non-negative term,
depending on T, is made equal to zero. Therefore, the

optimum value T,* is
25
Dih+ply)

Therefore, Eq. 14 has a mimmum value for the optimal
value of T,* reducing TVC,(T) to

TVC,(T,*) = 2SD(h + pI,) + D(c - pM,1,).

From Eq. 9and 15, we can find T,* =T,*.

* —

(15)

T,

(16)

DETERMINATION OF THE OPTIMAL
CYCLE TIME T*

From Section 2, Eq. 6 implies that the optimal value of
T for the case of T > M,, that is T,*> M,. We substitute
Eq. 6 into T,*> M,, then we can obtain the optimal value
of T

if and only if - 28 + DM, (h+ pL,) < 0. 17)

Likewise, Eq. 9 implies that the optimal value of T for
the case of T < M,, that 1s T,* < M,. We substitute Eq. 9
into T,*< M, then we can obtain the optimal value of T

if and only if - 28 + DM, (h + ply) > 0. (18)

Of course, if T,* = T,* = M,, we can obtain that
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if and only if - 28 +DM,* (h + pl) = 0. (19)
Similar disscussion, we can obain following results.

T,*> M, if and enly if - 28+ DM,” (h+pl) <0, (20

T,*<M,if and enly if - 28+ DM,” t(h+plp>0  (21)

and
T*=T,* =M, ifand only if - 28+ DM, (h+ pI,) = 0. (22)

Furthermore, we let

A, =-25+DM,’ (h+pL,) (23)

and

A, - 23 +DM,* (h+ ply). (24)

Since M, <M, we can get A, <A, from Eq. 23 and 24.
Summarized above Eq. 17 to Eq. 24, the optimal cycle time
T* can be obtained as follows.

Theorem 1

If A = 0, then TVC(T*) = min{TVC,(T,*),
TVC,(T,*)}. Since T,* = T,*, therefore T* = T,* =
T,*.

IfA<Oand A, = 0, then TVC(T*) = min{TVC,(T *),
TVC,(T,*)}:. Hence T* 1s T,* or T,* associated with
the least cost.

If A, < 0, then TVC(T*) = min{TVC/(T*),
TVC,(T,*)t. Hence T* is T,* or T,* associated with
the least cost.

Theorem 1 is an effective procedure to find the
optimal cycle tume T* by easy judgment the numbers A,
and A,. Theorem 1 1s really very sumple.

NUMERICAL EXAMPLES AND SENSITIVITY
ANALYSIS

The proposed approach is applied in above section
to efficiently solve the following numerical examples. In
addition, the percentage cost penalty (PCP)
investigated between our solution and Chang’s
solution™ in changing the parameter of the cash discount
rate r. Furthermore, the sensitivity analysis is conducted

1s

for a problem with 2 parameters-the period of cash
discount M, and the unit selling price p.



J. Eng. Applied Sci., 2 (1): 143-148, 2007

Table 1: Comparisons of our solution and Chang’s solution (in changing the parameter r)

Let S=3$200/order, D=1000units/year, c=$100/unit, p=$110/unit, h=$1/unit/year, Ic=$0.15/$/vear, Id=$0.1/$/year, M,;=0.01year and M,=0.1year

Chang’s solution Our solution
r A A, T* TVCATH T* TVCLTH PCP
0.1 <0 <0 T,=0.158193 92276.97 T,*=0.166143 92274.07 0.003139
0.2 <0 <0 T,=0.158193 82172.85 T, *=0.175434 82160.64 0.014865
0.3 <0 <0 T,=0.158193 720068.73 T, *=0.1864189 72039.63 0.040399
0.4 <0 <0 T,=0.158193 61964.61 T, #=0.199950 61909.50 0.089020
0.5 <0 <0 T,=0.158193 51860.49 T,*=0.216836 51768.10 0.178470
0.6 <0 <0 T,=0.158193 41756.37 T, *=0.238896 41612.27 0.346292
0.7 <0 <0 T,=0.158193 31652.26 T, #=0.269461 31437.03 0.684610
0.8 <) <) T,=0.158193 21548.14 T,*=0.315911 21233.65 1.481097
"PCP(percentage cost penalty)={[TVC.(T*")-TVCo(T*)TVC(T*)}*100%
Table 2: The optimal cycle time with various values of M; and p
Let S=$200/order, D=2000units/year, c=$50/unit, h=$5/unit/y ear, Ic=3$0.1 5/$/vear, [d=30.05/$/vear, r=0.05 and M,—0.2y ear.
M,=0.05 year M,=0.1 year M,=0.15 year
p=SAmit A, Ay T TVCT*) A Ay T TVCT™) Ay Ay T* TVC(T™)
100 <0 =0 T, *=0.13013 97443 <0 =0 T, *=0.13508 96851 =0 =0 T,*=0.14142 96328
150 <0 =0 T, *=0.12813 97395 <0 =0 T, *=0.12722 96660 =0 =0 T, *=0.12649 95912
200 <0 =0 T, *=0.12610 97346 <0 =0 T, *=0.11884 96457 =0 =0 T,*=0.11547 95464
In Table 1, the optimal cycle time in Chang’s solution CONCLUSION

will not change when cash discount rate 1s increasing in
this example. Since the optimal cycle time (T,) in Chang’s
solution 15 independent of the cash discount rate r. In
addition, it is found that the percentage cost penalty is
mcreasing when the cash discount rate is increasing.
Therefore, it may cause significant errors and penalties
using wrong model when the cash discount rate 15 larger.
To study the effects M, and p on the optimal cycle
time and the armual total cost for the retailer derived
based on the proposed method, the example is solved and
shown in Table 2 with various values of M, and p. The
following inferences can be made based on Table 2. First
of all, the retailer will adopt the short payment period,
optimal cycle time is T,* or T,*, to obtain the minimized
annual total cost n this example. Secondly, both T* and
TVC(T*) for the retailer are decreasing when p is
mereasing. This result implies that the retailer will order
less quantity to take the benefits of the delay payments
more frequently when the umnit selling price 1s higher than
the unit purchasing price more and more. Thirdly, the
annual total cost for the retailer 1s decreasing when M, 1s
increasing, but the optimal cycle time for the retailer is
mncreasing n lower p and decreasing m higher p. It implies
that the retailer will order more quantity to obtain more
cash discount i lower p. In higher p situation, the
benefits of earned interest more frequently ordering small
lot-size are larger than the cash discount ordering big lot-
size. Therefore, the retailer will adopt big lot-size policy in
lower unit selling price and small lot-size policy in lngher
unit selling price. Nevertheless, the retailer will take the
benefits from the annual total cost reduced when the
supplier offers the longer period of cash discount.
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This study corrects Chang’s paper®™ that discussed
the economic order quantity under the conditions of cash
discount and payment delay using algebraic approach.
Using this approach presented in this paper, we can find
the optimal cycle time without using differential calculus.
This should also mean that this algebraic approach 1s a
more accessible approach to ease the learming of basic
inventory theories for younger students who lack the
knowledge of differential calculus. Then, we provide one
theorem to efficiently determine the optimal cycle time
depending on the numbers of A, and A, Fmally, we
conclude that the decision-maker may cause significant
errors and penalties using wrong model when the cash
discount rate 1s larger.

The proposed model can be extended in several
ways. For instance, we may generalize the model to allow
for shortages, time value of money, finite time horizon,
finite replenishment rate and others.
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