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Abstract: Artificial Neural Network (ANN) is applied for pattern recognition of the tool wear in lathe.
Conventional back-propagation algorithm which uses Steepest-Descent Method (SDM), 1s applied to train the
ANN. One of adaptive algorithms which 1s the Extended Kalman Filter (EKF) algorithm to train the ANN,
especially for XOR problem. The ANN has been trained using EKF and EKF with functional update method.
To show the supremacy of EKF over SDM, the results of EKF algorithm is found to be faster than the
convergence speed of SDM. The performance of EKF algonthm 1s almost the same as the performance of SDM
algorithm. Experiments were conducted on a lathe to collect cutting force data and tool flank wear land width
for various machining conditions. The network was trained offline. Fresh patterns were tested by using the
weights and thresholds obtained during training. The classification performance of EKF algorithm for the test

Ppatterns 1s above 75%.
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INTRODUCTION

In this study, a distributed neural network is used to
a pattern recognition problem for classification of tool
wear in turming, in order to discriminate between
acceptable wear of the tool and completely worn-out tool.
Tool failure contributes to about 7% downtime of machine
tools!". Tool failure can be due to fracturing or by
gradual wear. There are a number of reasons for installing
a momitoring system in a manufacturing process. Some of
them are to run the machine without any mterruption due
to the breakage of the tool tip. To achieve this, breakage
of the tool has to be sensed and replaced with a new tool.
When it 1s possible to identify the tool breakage, it will
help in preventing fatal damage to the system, thus
minimizing rejection of study pieces™.

Tool wear can be monitored by measurements of
process variables by using several sensing devices. Tool
wear sensing methods can be direct (optical, wear
particles and radioactivity test and tool/ work distance)
and indirect (cutting force, acoustic emission, sound,
temperature, power 1nput and surface
roughness of machined work piece)®. In addition to
measurement of these variables, strategies are required to

vibration,

control the machining operations on-line automatically.
This can be implemented with rule based systems™™, such
as statistical techniques (group method data handling,
multiple regression analysis) and artificial neural
networks.

Artificial neural networks: A neural network is
constructed by highly interconnected processing units
(nodes or neurons) which perform simple mathematical
operations'”. Neural networks are characterized by their
topologies, weight vectors and activation function which
are used in the hidden lavers and output layer™. The
topology refers to the number of hidden layers and
connection between nodes m the lidden layers. The
activation functions that can be used are sigmoid,
hyperbelic tangent and sine. The network models can be
static or dynamic!'”. Static networks include single layer
perceptrons and multilayer perceptrons. A perceptron or
adaptive linear element (ADALINEM'Y refers to a
computing unit. This forms the basic building block for
neural networks. The input to a perceptron is the
summation of mput pattern vectors by weight vectors. In
Fig. 1, the basic function of a single layer perceptron 1s
shown.
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Fig. 2: Multilayer perceptron

In Fig. 2, a multilayer perceptron is shown
schematically. Information flows ma feed-forward menner
from mput layer to the output layer through hidden layers.
The number of nodes in the input layer and output layer
1s fixed. Tt depends upon the number of input variables
and the number of output variables in a pattern. In this
study, there are six mput variables and one output
variable. The number of nodes in a hidden layer and the
number of hidden layers are variable. Depending upon
the type of application, the network parameters such as
the number of nodes in the lndden layers and the number
of hidden layers are found by trial and error method'**1,
For most of the applications one hidden layer is sufficient.
The activation function which 1s used to train the ANN,
1s the sigmoid function and it 1s given by:

f(x) @

:1 + exp(—x)

where f (x) 1s a non - linear differentiable function,

X=X W, (P! () B(p)

Nn  is the total number of nodes in the nth layer
W 15 the weight vector connecting i1th neuron of a
layer with the j* neuron in the next layer.

0 15 the threshold applied to the nodes in the hidden

layers and output layer and

1

P 1s the pattern number.

For the first hidden layer, x; is treated as an input
pattern  vector and for the successive layers, x; 1s the
output of the ith neuron of the proceeding layer. The

output x; of a neuron in the hidden layers and in the
output layer is calculated by :
n+l 1
X (p)= @

1+exp(—x)

For each pattern, error E (p) in the output layers 1s
calculated by :

Ny
Ep)--E e« e O
i-1
where M 13 the total number of layer which include
the input layer and the output layer,

Ny 1s the number of nodes in the output layer.

di(p) is the desired output of a pattern and
¥XMp)  is the calculated output of the network for

the same pattern at the output layer.

The total error E for all patterns 1s calculated by :
L
E=YE(p) @
p-1

where I is the total number of patterns.

Disadvantages of steepest-descent method: The number of
cycles required for E to reach the desired mimmum 1s very
large. The E does not reach the desired mimmum due to
some local minima whose domains of attraction are as
large as that for the global mimimum. The algorithm
converges to one of those local minima and hence
learmng stops prematurely or the value diverges. The
updating of weights will not stop unless every input is
outside the significant update region. The significant
update region is from 0.1 to 0.9. Due to this, the output of
the network will be approaching either 0.0 or 1.0. This
requires a large number of iterations for the convergence
of the algorithm.
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Fig. 4: Effect of learning rate (1) ) in SDM algorithm

Extended kalman filter (EKF): In this study, EKF
algorithm 1s applied to multilayer perceptron. The EKF
algorithm 1s a state estination method for a non-linear
system which can be used for parameter estimation. A
multilayer perceptron is a non-linear system having a
layered structure. Its learning method 1s considered as
parameter estimation. This method gives approximately
the minimum variance estimates of the link weights!'*'¥
which results in better convergence. The convergence
speeds of EKF and SDM algorithms are compared by
using XOR problem Fig. 3 shows the number of iterations
required by EKF algorithm for various number of hidden
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nodes. In Fig. 4, the number of iterations required by
SDM algorithm for different mumber of hidden nodes is
shown As a comparison of EKF and SDM algorithms, for
8 nodes n the hidden layer, it requires only 60 iterations
for EKF algorithm (Fig. 3), whereas it requires 700
iterations for SDM algorithm for learning rate (1) to reach
the mean squared error (MSE) of 0.01.

Weight updation of the ANN by using EKF algorithm: For
each pattern, the output of the nodes in the successive
layers 1s calculated by using Equations (1-4) in a feed-
forward manner. The weights W, are updated from the
output layer to the input layer through hidden layers by
using the equations given in Table 1. In these equations,
A, O, 1, ¢ and P are updating parameters and Q 1s the
nverse matrix.

Functional Update Method (FUM): In classification
problems, mput patterns can be grouped mnto classified
subset and misclassified subset any given
weights!™"® The input patterns said to be
misclassified if the error "D’ in the output layer is greater
than 0.5 The input patterns are said to be classified 1f D 1s
less than 0.5. Weights are modified only when D i1s
greater than 0.5. The functional update algorithm used is
as follows

for
are

Step 1: Imtialize the weights randomly.

Step 2: Present a pattern with new mputs and desired
outputs.

Step 3: Compute network output by Eq. 2.

Step 4: Determine V" the set of valid update data in the
output layer for the i® output node by :

05<D=<1-¢ &)

where

D=

d.(p)-x"(p) |and

€ is the error fixed by the programmer

If V"is empty, le noteven one node in the output
layer does satisfy Equation (5), go to step 8. Otherwise
gotostep 5.

Step 5: Compute the objective function E (p) by :

Y [dim-x' @ ©)

M eVt

1
E{p)=——3
P o



J. Eng. Applied. Sci., 1 (4): 530-537, 2006

Table 1 Algorithm for extended Kalman filter

Forp=1to...
A A0 DGO O AR g0
3. (pr=%"(p) 1<i <N, -1

For n=M-1tolNn, —1 throughstep —1
For i=1toN_, ~1

3, (py=xi"(p) 1—x" (p)) for the output layer
8, (p)=xi "(p) (1-x." (p)) 1;1 6, (p) , (p)fortheHiddenlayer

initialize inverse matrix Q for the output layer and hidden layer

W) =Q" (P-DX! (p), al (p)=(&X") ¥ (p)
BE(p)=(82(p))" 82(p);  Zi(p) =A(p)+a(p) B (p)

Updation of weights
Between the output layer and previous hidden layer

R,(P)=d;(p)—y { (p); For other layers R, (p) = x{ (p) —y*(p)
S PR P)¥p)
Z.{p)

W, (p)=wp) -1+

Updation of inverse matrix Q
Updation of § Only for hidden layers

Nn
97 () =97 (p) + & PILRT (PIOWG ()= Wi (P11 §77 =F fa

Table 2 Equations for calculating the computational effort required SDM, EKF and FUEKF algorithms

Forward calculation
Linear

L-1
Z (4n,+ 5)n,
i1

BRackward calculation

SDM
2 3
9HL+7§LH1H1-1 +172L(4nl+5)ni_1
EKF
2 3
15+5n, + i_zb(nﬂ,1 +28n° ,+18n, ,+ 2)+ X (4n,+5)n,
FUEKF

2 3
15+ 7n, +§L(n3171 +28n°  +18n,_ + 2)+ % (4, +5n,

In the above equations
1. - the number of layers
n; - number of nodes in the i* layer
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Fig. 5: Effect of imtial value of mverse matrix (Q) for a constant T, in EKF with FUM algorithm

Step 6: For EKF algorithm with FUM, adapt weights by
using equations given in Table 1.

Step 7: Repeat by going to step 3.

Step 8: Change the sigmoid function of the output
neuron to the signum function

The main advantage of FUM is that it will stop as
soon as the misclassified set is empty. The number of
iterations required by EKF algorithm with FUM for
different nodes in the hidden layer is shown in Fig. 5.
From this figure, it is clear that the number of iterations
required by EKF with FUM for 8 nodes in the hidden layer
to reach MSE of 0.01 is only 9, whereas the number of
iterations required for EKF algorithm is 60 (Fig. 3). The
equations for calculating computational effort required by
the computer for SDM, EKF and EKF with FUM
algorithms are given i Table 2. As a comparison of the
algorithms, the number of arithmetic operations required
for SDM, EKF and EKF with FUM algorithms to train a 6-
6-1 network configuration is given in Table 3.

DESCRIPTION OF EXPERIMENTS

Experimental set-up: Schematic diagram of the
experimental set-up is shown in Fig. 6. The experimental
study was carried out on a precision high speed Lathe.
The turning operation was carried out on a spheroidal
graphite cast won of 220-240 HB. The tool material used
was widalon HK 15. The cuting Speed (S) is from
200- 500 m/min with depth of cut (D) from 0.5-2.0 mm
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Table 3: Computational effort required by SDM, EKF and FUEKF
algorithms
Forward computation 203
Backward Computation
SDM 357
EKF 9412
FUEKF 9414
Piezoelectric
Dynamometer >
Charge Charge Charpe:
amplifier amplifier amplifier
Analog Analog Analog
indicator indicator indicator

Fig. 6: Experimental setup

and feed rate (F) 0.063-0.25 mm/frev. Data collected
include static forces axial force (IF,), radial force (I),
tangential force (F,) and flank wear land width (Vb) for
various combinations of S, F and D, The static forces
were measured, using a three component piezoelectric
crystal type dynamometer (Kistler type 9441) as a force
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transducer. Charge amplifiers were used for signal
amplification. Forces were read from the analog meter
attached to the dynamometer through charge amplifiers.
Tool flank wear land width (V,) was measured using tool-
maker's microscope. About 113 patterns were collected.

Experimental procedure: Experiments were conducted for
various sets of cutting conditions - S, F, D.. Static forces
and V, measurements were taken at different intervals of
time. Depending on the length of cut, machining was
stopped after every 60-80 seconds and Vb of the tool
was measured. Static forces were recorded at 2 or 3
intermediate points between two wear measurements. The
sets of measurements immediately prior to a wear
measurement have been used for training the neural
network. During remsertion of tool inserts after every
wear measurement, mserts were slugged into the slot
made out m the tool holder, so that there 1s no change
the tool overhang.

Selection of data: Selection of patterns for training the
neural network 1s important as they should be
representative of all the patterns collected during
machimng. Therefore, statistical techmiques have been
used to select the patterns out of 113 patterns collected
during the experiment. The number of classes selected are
two. Patterns with maximum variance VE; are selected.
The maximum VE{’ of a pattern is calculated by:

L
=52
B )
1 2
()

1

where

L
% (x; =X, ¥ and

1—-1

1
cli=—
L

nf 1s the number of features.

Training the network: Training was done offline using
PC-AT386 computer. The features - S, F, D, F,. F,, F, are
the inputs to the input layer and V, is the output in the
output layer.

Training and testing the network with SDM & EKF
algorithms: The value of each variable for all the patterns
is divided by its maximum value, so that the values lie
between 0.0 and 1.0. Variable in the output should
neither be 0.0 nor 1.0. The value 0.0 is considered as
0.00001 and 1.0 as 0.99999. Thus 1s, because the output of
the sigmoid function will never reach 0.0 or 1.0. In this
study, the actual munber of classifications required 1s two.
The range of classifications is given in Table 4.
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Table 4: Range of output for each class
Output feature Class I
Vi (um) <=100

Class
101 - 1300

For training the network with SDM algorithm, the
conditions used are = 1.0, W; =0.2-04 and 0 =0.0
with network configuration as 6-6-1. The conditions
used for traimng the network with EKF algorithm are
pip) = 1/20, with initial value for the inverse matrix
Q=10, W; =02-04 and6=0.0.

Training extended Kalman filter with functional update
method (FUEKF): The patterns are binary coded. Single-
layer perceptron is used. The network configuration used
is 31-4 (31 nodes in the input layer and 4 nodes in the
output layer). The conditions used for FUEKF algorithm
are 1 (p) = 1/20 and initial value for the inverse matrix
Q =10, Wy =02-04 andB =02-04.

RESULTS

During turning operation, 113 patterns
collected. Out of 113 patterns, 30 patterns were selected
for traimng the neural network. Thirty patterns used for
traimng are given mn Table 5. The algorithms used for
weight updates are Steepest-Descent Method (SDM),

Wwere

Table 5: Patterns used for training the ANN

Inputs Output
3 F D F, F. F. Vi
Class I 450 0.10 2.0 180 130 450 15
450 0.10 1.5 150 115 350 15
450 0.10 1.0 115 105 250 20
500 0.25 0.5 60 115 215 20
500 0.20 0.5 60 110 195 20
400 0.25 0.5 80 125 230 20
450 0.10 2.0 100 140 450 30
450 0.10 1.5 130 115 345 30
450 0.10 1.0 100 105 250 40
450 0.10 2.0 160 140 470 55
450 0.10 1.5 150 105 330 65
450 0.10 1.0 115 110 260 75
450 0.10 2.0 110 140 470 80
450 0.10 1.5 135 110 325 94
450 0.10 0.5 75 150 150 100
Class T 450 0.10 1.5 680 580 560 375
450 0.10 1.5 750 650 500 400
450 0.10 2.0 850 700 750 400
450 0.10 1.5 240 850 620 540
450 0.10 1.0 550 590 430 550
450 0.10 2.0 1100 1200 840 585
450 0.10 1.5 260 1200 800 690
450 0.10 1.0 570 700 450 755
450 0.10 2.0 1200 1400 1000 785
450 0.10 1.5 320 1800 1400 825
450 0.10 2.0 1500 1800 1000 880
450 0.10 1.0 950 700 500 980
450 0.10 1.5 380 1880 1500 980
450 0.10 2.0 1250 1440 1040 990
450 0.10 1.0 900 840 500 1300

8 — m/min, F —mmfrev. D, —-mm, F,, F;and F,-N, V- pm
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Table 6: Number of iterations required by SDM, EKF and FUEKF algorithms

Algorithm Range of Mean squared Number of Configuration of
Used threshold error iterations the network
SDM - 0.065 250 6-6-1
EKTF - 0.065 160 6-6-1
FUEKF 0.2-0.4 0.500 70 31-1
Table 7 Result of the network for 84 test pattems
Algorithm
SDM EK FUEKF
Number of patterns matching.
Class Total No. of test patterns used Percentage is given in brackets.
1 4 42 (10004) 42 (10004) 42 (1000%)
il 2 23 (4%) 25 (59%) 21 (50%)
Table 8 Overall performance of the network
SDM EKF FUEKF
Performance in percentage 77.30 79.76 75.00
1s given. The performance of the network for Class I 1s
100% with all the algorithms, but for Class II the
76- performance is less than 60%. This is due to the large
6x6xl discontinuity of V, in Class IT (Table 5). The overall
- performance of the network 1s given in Table &.
g CONCLUSION
£
g In this work, a supervised neural network has been
;‘g 614 tramed with three update methods: Steepest-Descent
Method (SDM), Extended Kalman Filter (EKF) and
extended Kalman filter with functional update (FUEKF).
361 The configuration of the network for SDM and EKF
algorithms 13 6-6-1. The data used is normalized analog
51 i i ; . data collected during turning operation. The configuration
0.060 0.065 0.070 0.075 0.080 of the network used for FUEKF algorithm is 31-4 without
Mean squared error (MSE) a hidden layer; the data used is binary coded data of the

Fig. 7: Classification performance of SDM algorithm

Extended Kalman Filter (EKF) and EKF with functional
update method (FUEKF). Traiming was done offline. The
convergence speed of EKF algorithm is faster than the
convergence speed of SDM algorithm. The training was
stopped once the error 'E' reached 0.065. It 1s found that
the performance of the network will deteriorate when E is
too high or too low. InFig. 7, performance of the network
for various E, trained by using SDM algorithm 15 shown.

In Table 6, the number of iterations required for
traiming the network with SDM, EKF and FUEKF
algorithms 1s given. When the network was tramned with
functional update, the training was stopped once the error
E reached 0.5, Since the signum function is used to
update the weights in FUM, 1t 1s sufficient to train the
network till the error comes to 0.5. In Table 7, performance
of SDM, EKF and FUEKF algorithms for 84 test patterns
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analog signals. The main importance 1s given to EKF and
FUEKF algorithms. The iterations required for EKF
algorithm is less than the iterations required for SDM
algonthm, to reach the Mean Squared Error (MSE) of 0.065
(Table 6), whereas the computational effort required for
EKF algorithm is much higher than the computational
effort required for SDM algorithm (Table 3).

The performance classification of EKF algorithm 1s
almost the same as that of the performance classification
of SDM algorithm (Table 8). When the network was
trained with FUEKF algorithm, the MSE was fixed at 0.5
and hence the iterations required was very less. The
performance of the FUEDF algorithm 1s almost the same as
the performance of the EKF and SDM algorithms
(Table 8). Except for the computational time required by
EKF and FUEKF algorithms, the EKF and FUEKF
algorithms are superior to SDM algorithm in terms of
convergence rate and classification of performance.
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