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3-D Dynamic Interaction Between Two Rigid Foundations Resting on
Layered Soil Parte I: Homogenous Soil
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Abstract: This study dynamic interaction between surface rigid foundations in a homogeneous viscoelastic
soil limited by a substratum. The vibrations come from masseles rigid foundations placed in soil layer and
subjected to harmonic loads of translation, swing and torsion. Required dynamic response of rigid surface
foundations constitute the solution of the waves equations obtained by taking account of the conditions of
interaction structure-soil-structure. The solution being formulated in terms of boundary integral equation
calculated in the discretized field for which the Green’s functions are known for each element. This study
allows the establishing of a mathematical model enabling us to determine the impedance (compliance) functions
of adjacent foundations according to theirs different distances, the depth of the substratum, the dynamic

properties of the soil and the frequency of excitation.
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INTRODUCTION

The dynamic foundation-soil-foundation interaction
phenomenon has long been recogmsed as an important
factor in the seismic and machine vibration response of
critical facilities and other closely spaced structures or
portions of a structure.

Rotative machines foundation constitutes a source of
vibrations which are transmitted to the surrounding soil.
Depending on the energy commumicated to the medium,
this disturbance may affect greatly either the soil or the
adjacent structure. Rational analysis of the phenomenon
requires taking into account the dynamic nature of the
interaction between the soil and the foundation. This is
essentially a wave propagation problem with mixed
boundary condition (1.e. rigid body displacement under
the foundation and none traction elsewhere).

Although, a solution of a foundation-soil-foundation
mteraction problem 1 most cases mvolves a
straightforward application of any of the well established
soil-structure interaction methods, a relatively small
number of 3-D investigations have appeared i the related
literature. This is probably due to the substantial
computational effort required by the Finit Element Method
and the usual straightforward Boundary Element method
formulations. Furthermore, there is a noticeable absence
of simplified discrete models which is due, perhaps, to the
general lack of rigorous results which would be used for
the verification and calibration of such models.

The complicated geometries, loadings and soil
conditions, have dicouraged, in general, the development

of analytical scluticns. Luco™ determined the impedance
functions for a rigid circular disk on layered elastic and
viscoelastic medium using an integral equation approch.
Apsel and Luco” used the integral equation approch
based on the green’s functions for layered soil media
reported in Apsel™ for the determination of the impedance
functions of embedded foundations. Using this approch
Wong and Luco studied the dynamic interaction
between rigid foundations in a layered half-space. Using
a semi-analytical formulation Cazetas and Roesset!
analysed the 2-D problem of strip foundations on a
layered half-space, Boumekik et al studied the 3-D
problem of embedded foundations on a layered
substratum, on the other hand Sbartai and Boumekik! 'V
analysed the transmission of the wave in the soil layer
and interaction between two structures caused by
machine foundation. The Finit Element Method has also
been applied by Gonzalez!'", Kausel et al.!'’; Kausel and
Roesset’ ; Lin ef al'! in determinig the behaviour of
rigid foundations placed or embedded in a stratum over
bedrock. A frequency domain Boudary Element Method
formulation has been developed to treat wave
propagation problems, soil-structure problems and
structure-soil-structure  problems, which limit the
discretization at the soil foundations mterface. In this
approach the field displacement is formulated as an
integral equation in terms of Green’s functions
Beskos!"™!].

In this study, the solution is formulated in frequency
domain Boundary Tntegral Equation Method. Only the
foundation-soil-foundation  interface and a free
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surface  between adjacent foundations are discritised.
Within the discritised medium, the Green’s functions
(displacement of the i* element due to harmonic unit force
applied on the j* element) are calculated using the Thin
Layers Method“?. Using this approach we established a
mathematical model enabling us to determine the
impedance  (compliance) functions of adjacent
foundations.

Basic equations
Model of calculation: The model of calculation is
represented on the Fig. 1. The two foundations
considered are supposed to be rigid, of form rectangular
(square) placed at the surface or partially embedded in
homogeneous soil limited by a substratum. The soil at
height H, is supposed to be viscoelastic linear
characterized by its mass density p, its shear modulus G.
its damping coefficient B and Poisson's ratio v. The
foundations are subjected to three harmonic external
forces Px, Py, Pz and at three harmonic moments Mx, My,
Mz Tt is assumed that the time dependence of the
excitation is of the type e in which 1 denotes the
frequency. For brevity, this time factor will be omitted in
the sequel. The goal being to obtain the impedance or
compliance functions of two foundations.

Displacements in an unspecified point ¢ of the soil
may be obtaining from the solution of the wave Equation:

((C2p - Czs)uj_ik + Czsuk_j1 + Czpmzuk)p =0 (1)

where:

C,, C; are the celerities of the waves of shearing and
compression, w the angular frequency of excitation and p
the mass density of the soil. The solution of Eq. 1 can be
formulated by following boundary integral Eq:

ua=[UofB.ds P (2)

with:

U, are the Green’s functions which represent
displacements in a point ¢ had with a load harmonic unit
(vertical and horizontal) applied in another point § of soil
and t; represent a harmonic load distributed on a surface
of soil dS,.

As long as the medium is continuous, this last
relation remains very difficult to evaluate. However, if the
solidmass of the soil is discretized in an adapted way, this
relation can be made algebraic and displacement can then
be calculated.

Discretization of the model: Tn this approach, the
principle of the discretization of the solid mass of soil is
represented on the Fig. 2. Tt is based on two types of
horizontal discretization one and the other vertical.
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Fig. 2: Horizontal and vertical iscretization

horizontal discretization consists in subdividing any
horizontal section of the solid mass of the soil in square
elements of 5, sections. The average displacement of the
element is replaced by displacement of its center and on
which the distribution of the constraints is supposed to
be uniform. The vertical discretization consists in
subdividing the solid mass of the socil in under layers
(Infinite Elements in the horizontal direction) rather low
thickness compared to the wavelength of Rayleigh (A/10)
to be able to linearize the displacement of under layer to
the other. This discretization being characterized by the
embedding of the foundation and the depth of the
substratum.

In the discretized model, the Eq. 2 is expressed in
algebraic form as follows:

:NERT jUaB.tB ds B (3

where:

NRT represents the total number of elements discretizing
the soil between two foundations and the interface
soil-foundations.

Displacement matrix of discretized soil: The total matrix
displacement of the soil is obtained by successive
application of the loads units distributed on the
constituent elements of the solid mass of the discretized
soil. This matrix includes the terms of flexibilities of the
soil which will be occupied by the first foundation
(medium1), the soil which will be occupied by the second
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foundation (medium 2) and those of the coupling between
the two mediums which can be written as follows:

[ 1= F‘ F} )
21 F

z

where:
F, (3N,x3N)) 18 the flexibility matrix of medium 1. F,, (3N,
XK 3N, 1s the flexibility matrix of medium 2. F,;, (3N, X 3N,)
1s the flexibility matrix of coupling of medium 1 on the
medium 2. F,, (3N, X 3N,) 1s the flexibility matrix of
coupling of medium 2 on the medium 1. N, and N, are,
respectively the number of elements discretizing medium
1 and medium 2.

The Displacements in the two mediums are
expressed then by:

{d.}=[F, 1{t, }+[E, 1{t,} (5)

{d}=[E It +[F, it (6)

where:

{t3= {t, tises tie. s gt Tepresent the vector charges of
the medium 1 in which {t,,}= {h,tn}' is the under-vector
charges applied to the disk k, where h, t and n are the
harmonic loads distributed according to respective
directions x, y and z.

{t.3= {to, s tuoos tat' represent the vector charges
of the medium 2 in which {t,}= {htn}’, is the under-
vector charges applied to the disk j, where h, t and n are
the harmonic loads distributed according to respective
directions x, y and z.

{dyi= idy, dips die, dig}t represent the vector
displacements of the medium 1 in which {d,}= {uv,w}
is the under-vector displacements applied to the disk k.
{d,3= {d,, dpp, dy.., d 4" represent the vector
displacements of the medium 2 representing the same
characteristics as the vector {d ,}.

Condition of compatibility and equilibrium: When the
two foundations are in place, they impose their
displacements on the various sections which will be
constrained to move like a rigid body. For all the elements
of the model, one can write the following relations:

{d,}=[R,1{D} ™
{d}=[R,1{D ®)
with:

iD= {AL AL AL @ @, @} the vector displacement of
the first foundation for the 6 degrees of freedom

considered; {D,}= {A, A, A, @. ¢, ¢}, the vector
displacement of the second foundation for the 6 degrees
of freedom considered and [R,]= [R,, Ry...., Ry, Ry Jis a
matrix of transformation of dimension (3N, x 6), depending
only on the geometrical characteristics of the discretized
volume of the soil of the first foundation where under
matrix 1s given by:

1 0 0 0 Z -y
[R]=l0 1 o -z 0 X &)
0 0 1 y -X 0 N

in which x,, v, and 7 are the co-ordinates of the element
k compared to the center of the foundation; [R,]= [R,,
R,.... R.... Ry;]' 1s also a matrix of transformation of
dimension (3N, x 6), depending only on the geometrical
characteristics of the discretized volume of the soil of the
second foundation where under matrix [R,] is similar to
that of the relation (9) m which x;, y; and z are the co-
ordinates of the element j compared to the center of the
second foundation.

If one notes P;, and M;, the components of the vector
charges applied to the first foundation, the equilibre
between the latter and the forces distributed on the
elements discretizing the volume of the foundation are
expressed for the loads of translations and rotations by:

M1 M1 h
Po=>t=>t| (i=xy.2) 10
P P
0k
o | YD~ Z t
M“:Z z-h-x-n| {i=xyz) an
k=
| x-t-y-h .

These two last expressions can be put in the
following matrix form:

{Pi=[R, .4t}

Same marnner, one can write the same thing for the
second foundation one has then:

(i=xy.2) 13
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W, y-n—z-t
MiZ:Z z-h—-x:n (i:x,y,z) ey
= x-t—y-h|

These two last expressions can be put n the
following matrix form:
{Po3= R, [ {t} (15
Response of the model: The relation binding the vector
directly charges external {P,} applied to the centre of
gravity of the foundation with the vectors displacements
{D,} and {D,} can be expressed starting from the
relations”*'Jby:

{P 3= [K, ] 4D K] D) (16)

where:

(K] =R ATR] (17)

is the dynamic stifness matrix of the firts foundation, with

[A] = [F,J-[F ). [F] " [Fy ]
(K] = [R1]t-[A]-1-[F12]-[Fz]-l-[Rz]

(18)
(19)

15 the coupling matrix of the first foundation on the
second foundations.

Same manner, one can obtain the relation binding the
vector charges external applied to the centre of gravity of
the second foundation to the vectors displacements
starting from the relations”** by:

(20)

{Pz} = [Kz] -{D2}+[K21] '{Dl}
where:

[Ko] =[R,J[E][M][R,] @

1s the Dynamic stifness matrix of the second foundation,
with:

(22)

[M] +[E,] AT B[R]

[1]

E (23)

21

J[AT" (R, ]

[K21] :7[Rz]t [Fz ]_1 [

is the coupling matrix of the second foundation on the
first foundation.

If as supposed the second foundation does not
exist, matrix [A] s then equal to the flexibility matrix of the
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first foundation [F,] and the expression of the dynamic
stifness of the foundation (17) becomes:

(24)

who represents the dynamic stifness matrix of smgle
foundation placed on the surface or partially embedded in
a momno or multilayer soi1l.

If the second foundation is unloaded (P, = 0), the Eq.
(16) and (20) becomes:

{Bl=[&] {D}+[x,]{D,} (25)
{0} =[K,] {D.}+[K,]-{D\} (26)

From there system one can write:
- (27)

[C] =R -[K, R K, ]

is the compliance matrix of the loaded foundation and

[CIZ] :_[KZ]AI[KZI]'[CII] (28)

is the coupling compliance matrix of the unloaded
foundation.

In the following, these two last relations are used to
analyses the dynamic interaction between two surface
square tigid footings placed on homogenous soil where
only one foundation is loaded.

RESULTS

Due the space lmitations only the vertical
compliances of the foundations are considered according
to theirs different separations, depth of substratum, the
dynamic properties of the soil and the frequency of
excitation.

Validation: The results of this work will be validated wlile
comparing results them obtained by the present study at
those obtamned by the 3-D frequency domain BEM
formulation of Karabalis et al.™. The comparison relates
to the case of a square foundations placed at the surface
of a viscoelastic and isotropic semi-infinite soil having the
following characteristics: p =1, G = 1, s=1,v=0.333,
p= 0.05, H/b = 16 (to approach the semi-infinite one) with
b =1/2 1s the half wide of the foundations. Only the first
footing is loaded with the unit vertical force P, = 1,
however the second footing 1s unloaded. The
dimensionless vertical compliance C, is defined as:
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C, =Gb-K}' (22)

The soil is discretized horizontally in 9 quadrilateral
constant elements on the soil-footings interfaces and 9
quadrilateral constant elements on the free surfaces
between the footings. For the vertical discretization the
depth of the substratum will be subdivided in 10 under
layers. The compliances are calculated at relative distance
db=2 between two footings wversus different
dimensionless frequency a, The results thus presented
on Fig. 3 are practically comparable.

Parametric analysis: In the application, only one
foundation 1s subjected to umt vertical force P, = 1 for
different dimensionless frequency a, = wb/2C, The soil is
discretized in 9 quadrilateral constant elements to the
interface soil-foundations and in 9 quadrilateral constant
elements to the free surface and 1s characterised by p =1,
G =1, v=0.333, p=0.05. For this, the dimensionless
vertical compliance C;xGb for loaded foundation and
vertical coupling compliance of the unloaded foundation
C,xGb’ have been studied for different cases of
relative depth layer stratum (H/b= 2, 4,8 ) on relative

480

0,14

C11xGb

Fig. 7: Vertical coupling compliance C |,

frequency a, In Fig. 4 and 5 the effect of the soil layer
depth versus frequency 1s examined while the foundations
are massless, the distance ration between foundations
d/b = 2. The dimensionless vertical compliance C_(w)
indicate the vertical compliance of the foundation n when
the foundation m is loaded with vertical force. While
varying the depth of the substratum according to the
frequency we noted:

The static response increase when the layer depth
increases.

The response of the foundation on the stratum
approached the semi-infinite solution at layer depth
increase.

A remarkable shift in the resonant frequencies.

A variation i the peaks of resonance.

An important variation in the magnitude on the level
of the resonant frequencies with the smaller depth of
the substratum.

The behaviour of the unloaded foundation is similar
to that described above for the loaded foundation, the
only difference being that the magnitude of the resonant
peak increase with the layer depth increase. The
dimensionless vertical compliance C xGb for loaded
foundation and vertical coupling compliance of the
unloaded foundation C,xGb have been studied for
different cases of distance between two foundations
(db =2, 4, 6, 8). In Fig. 6 and 7, the mfluence of the
distance  between foundations frequency
a= 0b/2C, 1s examined while the foundations are
massless, the distance ration between foundations
H/b = 8 and the damping level is kept constant at [ = 0.05.

VErsus
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Tt is noticed that the variation magnitude of the
compliance of the charged footing 1s appreciably affected
i the vicimty of the maximum values with a reduction
magnitudes as the distance between the two footings
increases. Concerning coupling compliance of the no
charged footing, we noted the same remark but with
magnitude much less mmportant. So, we noted that the
coupling compliance is more affected by interaction
phenomena that the charged footing. If d/b>8, we notice
that the first foundation does not nfluence almost any
more the second foundation and of this fact the
effect of the interaction between the two foundations
cancels itself.

CONCLUSION

In this study, the dynamic interaction between two
surface rngid foundations resting on homogenous
viscoelastic soil subjected to vertical harmonic external
force excitation has been developed and fully tested. The
solution is formulated in frequency domain Boundary
Element Method in conjunction with the Kausel-Peek
Green’s function for a layered stratum and quadrilateral
constant element to study the dynamic interaction
between adjacent footings with which the parameters of
mteraction structure-soil-structure 1n a soil layer profile
will be numerically given. The advantage of the method
used lies in limited the enough number of elements used
in the discretization of the model on the one hand and the
taking mto account of the heterogeneity of the soil on the
other hand. This last case will be to study later on in
other publications. This study shows well us the great
mmportance of the interaction foundation-soil-foundation
which proves to be different from the interaction soil-
foundation (smgle foundation). To this end, we
recommend to take into account this phenomencon in
account for the study of any structure.
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