MCdWe]l Journal of Engineering and Applied Sciences 1 (4): 400-405, 2006

© Medwell Onlme, 2006

Efficient Algorithm to Improve the Accuracy of Sessionizers in Web Usage Analysis

"Meera Gandhi and *3. 1. Srivatsa
"Department of Computer Science and Engineering,
Sathyabama deemed University, Jeppiar Nagar, Chennai, India
M. 1T, Chennai, India

Abstract: Web usage mining plays an important role in the personalization of Web services, adaptation of Web
sites and the improvement of Web server performance. Tt applies data mining techniques to discover Web
access patterns from Web usage data. In order to discover access patterns, Web usage data is reconstructed
into sessions with or without user identification. However, not all Web server logs contain complete
information for constructing user sessions. It has been proposed three extensions to heuristics in order to
mnprove their performance. This study describes improved statistical-based time oriented heuristics for the
reconstruction of user sessions from a server log. The improvement caused by using the heuristics can thus

be ascertained by multiple trials with same data set.

Key words: Web mining, web usage mining, session reconstruction, heuristics

INTRODUCTION

Web usage mining applies data mining techniques to
mine Web access patterns’™?. Mining Web access
patterns is useful when building user profiles which in
turn are used for the personalization and tuning of Web
services, the presentation of promotional contents and
other applications for which user interests, preferences,
requirements and behavioral conventions must be
assessed and served™. Mining Web access patterns is
also useful when improving Web structure and Web
server performance™. Users’ access to pages of the
Website should be separated into user sessions.

Each session is the group of activities performed by
a user from the moment she enters the site to the moment
she leaves it. User sessions are extracted from the Web
server log, the primary source of data in which the
activities of Web users are captured. More reliable Web
usage mining results need more reliable reconstructed
user session results. However, it is difficult to tell when a
user has left a Web site because there is no record of
users leaving. Aside from the lack of information, some
other problems also exist. For example, an IP sharing
problem exists because several users may access a site
through the same host or proxy and may employ the same
software agent. An empty referrer may appear inside a
session due to the following reasons:

* The user has typed the URL directly

* Requests are made by agents and agents do not
necessarily follow the page links.

+ Some frames belong to the same page.

time-oriented heuristics for session
identification™”; The session duration heuristic (hl) and
the page-stay time heuristic (h2). The heuristic hl states
that the duration of a session must not exceed a
threshold. The heuristic h2 is based on the assumption
that the duration of a visited page must not exceed a
threshold. Due to users’ irregular navigation behavior, the
performance of the time-oriented heuristics (hl and h2)

with fixed thresholds in reconstructing the sessions have

Two

not been satisfactory. In this study we propose three
extensions to hl and h2 heuristics in order to improve
their performance.

Proposed heuristics: Commonly used time thresholds for
hl and h2 are 30 and 10 min, respectively. A 30-min cutoff
time for session duration is proposed by Catledge™ and
used commonly in many applications. A 10-min threshold
for page-stay time is mentioned by Spiliopoulou™ as a
very conservative maximum cutoff. We believe that
different Web site structures and different user groups
should have different thresholds for hl and h2. In this
study, a statistical-based study is employed to determine
appropriate thresholds for hl and h2. The main aim of the
proposed study 1s to unprove the performance of hl and
h2. In the implementation we have used the following
notations:

» Fhl: hl heuristic with 30 min fixed threshold.
* Fh2: h2 heuristic with 10 min fixed threshold.
+ Dhl: hl heuristic with variable threshold.
» Dh2: h2 heuristic with variable threshold.

Corresponding Author: Meera Gandhi, Department of Computer Science and Engineering, Sathyabama deemed University, Jeppiar

Nagar, Chennai, India

J. Eng. Applied Sci., 1 (4): 400-405, 2006

The heuristics Fh2 and Dh2 put a limit on the time
spent on a page. We in turn propose the heuristic Mh2
which is based on the time difference between two visited
pages. A page in the middle of two pages will be assigned
to the session to which it is closer (i.e., has smaller time
difference). This heuristic is based on the assumption that
closer pages are more likely to belong to the same
session.

Heuristics Fhl, Fh2, Dhl, Dh2 and Mh2 are all time
oriented heuristics. Cooley®points out that Web
topology can help user session identification. In addition,
clearly Web access patterns result from reasons such as
underlying structure of Web sites, users’ habits, users’
mterests in topics and association of concepts. Many
types of access patterns can be extracted with different
meanings and usages .

One typical type of access pattern is Maximal
Frequent Sequence (MFS), which is defined by as
frequently wused contiguous sequences of page
references. Based on the assumption that MFSs extracted
from one place of Web usage data may likely exist in other
places, we use MFSs to pre separate an access sequence.
Then we apply other heuristics on pre-separated access
sequences. Moreover, applying MFSs into session
reconstruction may somewhat solve lack of information
problems.

The reconstruction framework: Figure 1 illustrates the
structure of the system developed in this study. In this
Fig., ellipses represent entities or databases, rectangles
represent engines or components in the system and
arrows represent data flow from/to entities to/from system
components. Real sessions are captured by coolkies or
other information such as TPs from the Web server log.
The Statistical Analyzer calculates two time thresholds for
Dhl and Dh2 using real sessions. The MFS Discoverer
identifies MFSs from a generalized suffix tree built from
real sessions (training examples). The discovered MFSs
are used by the Session Reconstructor to separate the
given long sequence of users’ accesses (testing data) into
smaller secquences. Finally, the Session Reconstructor
combines smaller sequences into sessions by applying
individual heuristic or a combination of different
heuristics. A detailed explanation of each system
component is given in the following subsections.

Dynamic heuristics: The Statistical Analyzer calculates
threshold values e, and «, for Dhl and Dh2 as follows:
0<he?

o, =pl + 4w, M

o, = u2+ia, O<Az< 5 2
where pl and p2 represent the average duration of all

sessions and the average page-stay time, respectively. «,

401

Statistical
analyeer

LN

Real @
sessions
Long sequence

Fig. 1. Simplified structure of the system

Session
reconstructor|

Reconstructed
sessions

MFS discoverer

and «, denote standard deviations of session duration
and page stay time, respectively. Let xi and yj represent
duration of ith session and page stay time of jth page.

Let S and P represent the total number of sessions
and pages in the data set, respectively. We calculated the
averages (ul, n2) after removing the smallest and largest
values from the set of session durations and the set of
page-stay times. Experiments are carried out using values
0 to 5 for A. The results are presented in Subsection 5.2

Maximal frequent sequences: A frequent sequence 1s
defined as the frequently used contiguous sequence of
page references”™. A frequent sequence is maximal if it is
not a subsequence of any other frequent sequence. The
technmique of detecting MFS, Online Adaptive Traversal
{OAT) pattern mining, is presented in Xiao™.

A large sequence can be represented by a suffix tree.
In the suffix tree the nodes that have only one child are
ignored. The subsequences represented in the suffix tree
by each edge are shown as x:y, where x represents the
position of the first character n a subsequence and y 1s
the length of that subsequence. Each mternal node
represents a sequence of characters that start from the
root. The suffix link at the internal node points to the node
that represents the longest suffix of the subsequence. The
suffix links pointing to the root are ignored. Suffix links are
used to help construct a suffix tree.

Ukkonen’s method for constructing a suffix tree 1s a
linear time algorithm"™™'™". It uses suffix links to speed up
the implementation. However, the training examples that
are used to discover MFSs are multiple sequences pages.
Thus, the suffix tree for multiple sequences, called
generalized suffix tree"”, should be constructed. To
construct a generalized suffix tree, a umque symbol 1s
appended to each sequence and the database 1s regarded
as a large sequence.

A suffix tree for the first sequence of characters is
built first. Then, starting at the root of this tree, the
second sequence 1s matched agamnst a path in the tree
until a mismatch occurs. At that point, the remaming
characters of the suffix for the second sequence are added
to the current suffix tree. When the second sequence is
fully processed, it encodes all the suffixes of the first
sequence and all the suffixes of the second sequence.
Following this process, the generalized suffix tree for the
string set 1s built.

J. Eng. Applied Sci., 1 (4): 400-405, 2006

After constructing the generalized suffix tree, the
MFSs are extracted by the OAT algorithm. The OAT
algorithm was mmplemented in C++ and works properly
with experimental data. The experimental results are clearly
described in”!. The implemented QAT algorithm outputs
MFSs and their suffixes mstead of only MFSs since the
latter needs more memory. Fortunately, this fact makes
implementation of our system much easier. To separate a
given long sequence based on those MFSs, it is more
efficient to match the long sequence with the suffix tree.

Session reconstructor: Two processes, pre-separation of

access sequence and session Teconstruction, are

performed by the Session Reconstructor.

Pre-separation of access sequences: MF3s produced by
the QAT algorithm are sequences that frequently appear
n the tramning examples. A given access sequernce 1s pre-
separated mto a smaller sequences by MEFSs.

These smaller sequences are later used for session
reconstruction. The output of the OAT algorithm is the
MFSs and their suffixes. A simple way to separate the
long sequence 1s matching the sequence to the MFSs by
scanning all the MFSs one by one. One difficulty found
in this approach is that the separation of the access
sequence cannot be decided until all the MEFSs are
scanned and compared. Using the suffix tree of MFSs 1s
a more efficient way and is implemented in our system.
Since the long sequence is separated by scanning one
character after another from left to right, only MFSs and
their suffixes should be compared n order to get maximal
length of shorter sequences. We first build the suffix tree
for the MFSs. All the suffixes of the MFSs are already
found by the OAT algorithm.

The tree for all the MFSs and their suffixes 1s, of
course, the suffix tree of the MFSs. Once the tree is built,
the long sequence can be separated by walking down this
tree from root to the deepest node. The deepest node here
means that there i1s no further character that can be
matched by the children of the node. This node can be an
internal node, a leaf, or even the root. By repeating this
process, we finally get a set of shorter sequences, which
will be used for session reconstruction.

Session reconstruction: Heuristics Fhl, Fh2, Dhl, Dh2,
Mh2 and their combimnations are used to reconstruct the
sessions. They are applied after separating long access
sequences using the discovered MFSs. Note that there is
no difference between Fhl and Dhl as well as Fh2 and
Dh2, except Fhl and FhZ use fixed thresholds whereas
Dh1l and Dh2 use variable thresholds.

402

Procedure reconstructs (Stack S)
// s stores sequences after pre-separation
while s 13 not empty
pop-up (atmost) three sequences)
from the top of the stack
if three sequences are popped
if the first sequence satisfy the constraints
if all three satisfy the constraints
merge all of them ,push back to the stack
else 1if the last two sequences satisfy the constramts
if the second one 1s closer to the first one
merge the first two sequences, becomes one session
else first sequence becomes the one session
else
merge the first two sequences, becomes one session
else first sequence becomes the one session
else if two sequences are popped up
if they satisfy the constraimnts merge them and
becomes one session
else only one session is popped up
it becomes one session
end while
end procedure

Fig. 2: Session reconstruction algorithm

The pseudo code for the Session Reconstruction
(SR algorithm 1s shown mn Fig. 2. The sequences resulting
from the pre-separation stage are stored mn a stack. From
the stack, each time at most three sequences are removed
and possibly merged. A simple case happens when there
1s only one sequence left in the stack and this sequence
will directly become a single session. Two complex types
of merging sequences can happen.

If there are two sequences left in the stack that
satisfy the constraints of the heuristics, they are
merged and become a single session. Otherwise,
each becomes a session.

The most complex case 15 when there are three
sequences to be merged (Fig. 2).

Note that there are only two cases that a new session
will be created

when the first two sequences cannot be merged or
the second sequence is closer to the third sequence,
the first sequence becomes a new session, b: when
only the first two sequences can be merged or the
second sequence 1s closer to the first sequence, the
first two sequences are merged and become a new
$ess101L.

J. Eng. Applied Sci., 1 (4): 400-405, 2006

TImplementation: Tmplementation of the system consists of
four phases: data preparation, data preprocessing, real
session generation and evaluation.

Data preparation: In the data preparation phase, data are
collected and cleaned and real sessions are generated.

Data collection: All the experiments are carried out using
a large data set. Part of the data set is reserved for testing.
The rest is used to calculate thresholds for Dhl and Dh2
heuristics and find maximal frequent sequences. The
MFSs are used for pre-separation of the test data. The
training and test data are obtained after cleamng the Web
log data and generating real sessions.

Data cleaning: The cleaning process removes
graphic/multimedia entries as well as information such as
graphic-maps. Most related works also remove the entries
produced by executing CGI scrpts and ‘POST’
commands. Because these entries contain valuable
information for session reconstruction, we decided to
keep them. However, we remove entries that are generated
by CGI scripts but do not have direct HTMIL references.
Entries with status code “4xx’, “5xx” and ‘301 are removed
as well as entries with the ‘HEAD” method.

Real session generation: The real sessions are generated
by simply counting the souwrce IPs. In this study we
assume that the [P sharing problem does not exist or 1s at
its mimmum effect. For a smgle user with multiple
sessions, we use the referrer information to assign visited
pages to the sessions properly.

Data preprocessing: In this phase, we select useful
information from the real session data including visited
pages and time stamps for each page. Each page is
assigned a unique TD. The time stamp of a page is
comverted mto an integer number which represents the
time difference in seconds between this page and the
earliest visited page. The result of this process 1s a file
contalmng and
corresponding time stamps. Subsequently, we split the
real sessions into two parts: trainmng data and test data
(Data for Training and Testing for details).

real sessions with visited pages

Session reconstruction: The Session Reconstructor uses
the log data to build sessions. Tt consists of a number of
components. One component builds the suffix tree. Tt uses
the discovered MFSs and their suffixes as mput and
returns the suffix tree. Every node in the suffix tree 1s a
hash table, which contains different visited pages.

403

Another component of the Session Reconstructor is
a procedure that separates the log data by matching the
suffix tree. Starting from the root of the suffix tree, nodes
are visited within a path until there are no further visited
pages that can be matched. The procedure repeats the
process to match the following visited pages. The smaller
sequences produced by this procedure will be stored m a
stack. The third component validates discovered MFSs
and discards the ones which contain only one visited
page or are not sequential in time.

Evaluation: The degree of similarity between the real
sessions and the generated sessions 1s used to evaluate
the performance of the SR algorithm. Two measures are
used to calculate the degree of the similarity. In the first
similarity measure, S, the degree of similarity between a
real session R = {pl, p2, ..., pn} and a generated session
G = {gl, g2, ..., gn}, where p1 and g1 denote visited pages,
1s given as follows:

RN G

S
RUG|

Another similarity measure, S ° | is calculated as follows:
S =1-(dy (d)" where d represents the percentage of
extra pages generated and d° represents the percentage
of pages missed. n and 1- n represent the weights of d and
d *, respectively. dand d © are calculated as follows:

HR UG} -R|
d=
Gl
[{RSG} - G|
L=
R
RESULTS

The experiments show the results of session
reconstruction based on two sets of traimng and test
data. the results of different stages are presented in the
followmng subsections.

Data for training and testing: Two sets of training and
test data are created from real sessions. The first set is
created by selecting x number of sessions starting from
the first session in every 100 real sessions. The second
set is created by selecting x number of sessions starting
from the twentieth one in every 100 real sessions. The
value of x 135 randomly selected from a set of imteger

J. Eng. Applied Sci., 1 (4): 400-405, 2006

Table 1: Statistical information for training data sets

Table 5: Closest similarity S to §°

Data set for test 1 Data set for test 2 Data set for test 1 Data set for test2
N e o M(s) N e o M(s) Heuristics S s’ 8 g n
Page 153066 54 199.2526 3726 153066 54 199.2526 3726 Fhl 0.7649 0.7735 0.779%4 0.7789 1.0
Session 24127 269 5587891 19608 24055 268 555.1731 19608 Fh2 0.7925 0.8084 0.8118 0.8257 1.0
Fhl andFh2 0.7926 0.8090 0.8114 0.8257 1.0

Table 2: Thresholds for Dhl and Dh2 using eqns. 1 and 2 (all numbers are
in seconds)
Data set for test 1

Data set for test 2

A Dhl Dh2 Dhl Dh2
0 269 54 268 51

1 828 253 825 251
2 1386 453 1382 452
3 1945 652 1940 652
4 2504 854 2497 854
5 3063 1050 3054 1050

Table 3: Similarity 8 for test 1
Rimilarity 8

Heuristics 0 1 2 3 4 5

Dhi 07653 0.7858 07719 0.7636 0.7606 0.7593
Dh2 0.6992 0.7912 08045 0.7836 0.7779 0.7734
Dhl and Dh2 0.6976 0.7900 08044 0.7864 0.7779 0.7733
Mh2 and Dhl 0.7650 0.7956¢ 0.7721 0.7635 0.7608 0.7593
Mh2 and Dhl 0.6676 0.7900 0.8044 0.7864 07779 0.7733
and Dh2

Table 4: Similarity 8 for test 2

Heuristics Rimilarity 8
0 1 2 3 4 5

Dhl 07777 07997 0.7832 07785 07758 0.7750
Dh2 0.6999 0.8052 0.8205 0.8064 0.7933 0.7877
Dhland Dh2 0.6997 0.7041 08198 0.8061 0.7831 0.7876
Mh2and Dhl 0.7773 0.8051 0.7837 0.778 0.7757 0.774¢
Mh2and Dhl 0.6987 0.8041 0.8198 0.8065 0.7931 0.7836
and Dh2

numbers less than 20. Information about the two sets of
training data 1s given m Table 1. In this Table, N
represents the total number of pages or sessions, | is
average session duration or page-stay time in seconds, A
denotes standard deviation and M represents maximal
session duration or page-stay time.

Results of statistical analysis: The Statistical Analyzer
produces different thresholds for the Dhl and Dh2
heuristics. These thresholds are summarized in Table 2. In
this Table, A represents the number of standard
deviations.

Selecting the best similarities: Tables 3 and 4 give the
similarities between real sessions and generated sessions
according to different thresholds summarized in Table 2.
Note that in Tables 3-7, we use the symbol and to
represent combinations of heuristics. For example,
Mh2&Dhl &Dh2 represents the combination of Mh2, Dhl

Table 6: Test Results for d and d°

Test 1 Test 2
Heuristics d d’ d d
Fhl 0.2265 0.0107 0.2121 0.0087
MFS and Fhl 0.2378 0.0102 0.2238 0.0082
Fh2 0.1916 0.0176 0.1743 0.0145
MFS and Fh2 0.2053 0.0123 0.1916 0.0086
Fhl and Fh2 0.1910 0.0118 0.1743 0.0115
Dhil 0.2034 0.0237 0.1882 0.0260
Dh2 0.1880 0.0266 0.1529 0.0265
Dhl and Dh2 0.1681 0.0289 0.1525 0.0268
Mh2 and Dhl 0.1677 0.0267 0.1732 0.0278
Mh2 and Dhl andDh2 0.1682 0.0293 0.1525 0.0264
Table 7: Similarity 8 for different heuristics

Similarity 8

Heuristics Testl Test2 Average
Fhl 0.7649 0.779%4 0.7722
MFS and Fhl 0.7541 0.7683 0.7612
Fh2 0.7925 0.8118 0.7939
MFS and Fh2 0.7852 0.8020 0.7939
Fhl and Fh2 0.7926 0.8114 0.8020
MFS and Fh12 and Fh2 0.7847 0.8009 0.7928
Dhl 0.8045 0.8205 0.8125
Dh2 0.8045 0.8198 0.8121
Dhl and Dh2 0.7856 0.8001 0.7929
Mh2 and Dhl and Dh2 0.8044 0.8198 0.8121

and Dh2 heuristics. In Tables 3 and 4, Dhl and the
combmation of Mh2 and Dhl show the best results when
their thresholds are set to p + la. Dh2, the combination of
Dhl and Dh2 and the combination of Mh2, Dhl and Dh2
produce the best results when their thresholds are set to
pt+2a. These results will be used for comparison between
different ways of session reconstruction in the following
subsections.

Comparison of two measures: Different weights of d and
d’ produce different values of 3’. Experiments are carried
out to find an n that produces the closest 37 to S. The
results are presented in Table 5 for Fhl, Fh2 and their
combination. The results show that forn =1, the S’ 1s the
closest to 5, which indicates that the factor of missing
pages, d’, in our data may be ignored. Table 6 shows the
values of the two distance measures d and d° for different
heuristics. The distance d° is very small compared to d;
thus S is mainly affected by the distance d (i.e., extra
pages in the reconstructed sessions).

Comparison of different heuristics: The results for
different heuristics are presented in Table 7 and Fig. 3.

J. Eng. Applied Sci., 1 (4): 400-405, 2006

0.84-

0.82-
w 0.8
0.78-
0.76

1

Sumlarlty

0.74-
0.72

&,
&%&b

&

Ag
&
X

N

Nl

& & &
& $
£ S

> &
&
$

Fig. 3: Performance of different heuristics

Heuristics

From the results, it is seen that Dh2 provides the best
performance, Dhl performs better than Fhl and the
combination of Dhl and Dh2 produces better results than
the combination of Fhl and Fh2. In other words, the
simulation results indicate that overall heuristics with
dynamic thresholds perform better than heuristics with
fixed thresholds.

The heuristics Dhl and the combination of Mh2 and
Dh2 produce similar results. Also, the combination of Dhl
and Dh2 and the combination of Mh2, Dhl and Dh2
produce similar results Also, we have observed that MFS
slightly decreases the accuracy of session reconstruction
(the results of Fhl and MFSand Fhl in Table 7
and Fig. 3).

CONCLUSION

Session reconstruction reconstructs Web usage data
imto user sessions. Two time-oriented heuristics, Fhl and
Fh2, are commonly used for session reconstruction. We
used statistical analysis and usage mining technicues to
improve Fhl and Fh2. The new improved heuristics are
called Dhl, Dh2 and MhZ2. Experunental results show that
statistical analysis 1s useful and improves the performance
of Fhl and Fh2 heuristics Other future works will include:

* Explonng ways of improving the performance of Mh2

* Extracting Web access patterns other than MFSs
from sufficient historic data to improve the
performance

* Usmg other the
performance of the proposed session reconstruction
heuristics.

measurements to evaluate

405

b

10.

11.

12.

REFERENCES

Kosla, R. and H. Blockeel, 2000. Web mining
research: A survey and SIG KDD Explorations,
2: 1-15.

Pal, SK., V. Talwar and P. Mitra, 2002. Web mining
in soft computing framework : Relevance, state of the
art and future directions and IEEE Trans. Neural
Networks, 13: 1163-1177.

Kilfoil, M., D.A. Ghorbam, W. Xing, Z. Lei, I. Lu,
I. Zhang and . Xu, 2003. Toward an adaptive web:
The state of the art and science. In and Proceedings
of Communication Network and Services Research
(CNSR) 2003 Conference, pages 108-119, Monctorn,
NB, Canada, pp: 15-16.

Pe1, I, I. Han, B. Mortazavi-asl and H. Zhu, 2000.
Mining access patterns efficiently from web logs. In
and Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp: 396-407.
Spiliopoulou, M., B. Mobasher, B. Berendt and M.
Nakagawa, 2003. A framework for the evaluation of
session reconstruction heuristics m web usage
analysis. and INFORMS Tournal of Computing,
Special Tssue on Mining Web-Based Data for
EBusiness Applications, pp: 15.

Berendt, B., B. Mobasher, M. Nakagawa and
M. Spiliopoulou, 2002. The umpact of site structure
and user enviromment on session reconstruction in
web usage analysis. In and Proceedings of the 4th
WebKDD 2002 Workshop, at the ACM-SIGKDD
Conference on Knowledge Discovery in Databases,
Edmonton, Alberta, Canada.

Catledge, L. and I. Pitkow, 1995. Characterizing
browsing behaviors on the world wide web. In and
Computer Networks and ISDN Systems,
26: 1065-1073.

Cooley, R., B. Mobasher and J. Srivastava, 1999.
Data preparation for mimng World Wide Web
browsing patterns and Knowledge and Information
Systemns, 1: 5-32.

Xiao, Y. and M.H. Dunham, 2001. Efficient mining of
traversal patterns. Data and Knowledge Engin., 39:
191-214.

Gusfield, D., 1997 Linear-time construction of suffix
trees. Algorthms on Strings, Trees and Sequences.
University of Califormia, Davis.

Ukkonen, E., 1995, On-line construction of suffix
trees. In and Algorithmica, 14: 249-260.

Bieganski, P., J. Riedl and I.V. Carlis, 1994
Generalized suffix trees for biological sequence data:
Applications and implementation.

