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Abstract: Neural networks have been successfully applied to various pattern recognition and function
approximation problems. The author recently introduced left sigmoidal signals and right sigmoidal signals to
prove certain function approximation theorems for feed forward neural networks. In this study, by imposing
certain conditions on the continuous functions on R, we find those conditions that can be approximated by

feed forward neural networks with fixed weights using left sigmoidal signals and right sigmoidal signals.
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INTRODUCTION

The approximation capabilities of multi-layer neural
networks have been investigated by many
investigators!'". Tt has been proved that three layered
neural networks with sigmoidal activation functions can
approximate a set of continuous functions which 1s
defined in R" and for which lim f(x) exists to any desired
degree of accuracy™. Arbitrggmcontinuous functions over
are not generally approximated by Neural Networks with
sigmoidal activation function.

For mstance, f(x) = x is continuous on R, but it cannot
be approximated by a Neural Network with sigmoidal
functions over withrespect to suprimum norm as | f{x)l =
a x —«. However, Hong and Nahm!® established that
continuous functions f on R with lim f(x) = 0, can be
approximated by a bounded sigmoi(ﬁTgignal over R.

The authors introduced left sigmoidal and right
sigmoidal signals to approximate bounded continuous
functions for Feed Forward Neural Networks with one
hidden layer but net all continuous functions defined on
R can be approximated by the left and right sigmoidal
signals.

For example

) X X<0
(x)= 0 x>0

gx) {X . }

are not approximated by sigmoidal signals (left or right)
even though they are continuous on R. In this study, by

imposing certain conditions on the continuous functions
on, we find those continuous functions that can be
approximated by left (or) right sigmoidal signals.

PRELIMINARIES

Definition 2.1 0: R—R 1s said to be a generalized sigmoidal
function

if liir}ﬂ o(x)=0and ‘l‘iir}ﬂ ox)=1

Theorem 2.2: Let be a bounded sigmoidal function on R
and let €> 0 be given. If fis a continuous function on R
such that lim f(x) = 0, then there exist constants b,ce R

=

and positive integers k, N such that

ol
fix) - Ycaks + b) <e xeR

1=1

Definition 2.3: The function o: R—R is said to be left
sigmoidal if lim o(x)= 0.
The fulrxlgtion g R—-R s

sigmoidal if lim o(x) = 1.

said to be right

Function approximation with fixed weights
Theorem 3.1: Let o be a bounded right sigmoidal function
on R and € > 0 be given. If f(x) 1s a continuous function
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on R such that llim o(x) = 0, then there exist constants
—er

b,c, € Rand pésmve mtegers k, N such that

f(x)—icl g(kx+b)| <V xe (0,%)

1=1

Proof: Since f i1s uniformly continuous on [0,e], there
exists £ > 0 such that f{(x) - f{y)l < ¢/8lloll for any x, y € [0,0]
with, k-yl < 8, therloll >1.
Hence,
ll‘lﬂ f(x) = 0, there exists a positive mteger L such
that fix)l < e/8lol forx = L.
Let N=max {L,[1/8]+1}, where [¢] is the Gauss function.
We divide the interval [0, N] into 2N° equal intervals
by means of pomt x, where 0 = x;, < x, < ... < x
< Xyt =N
Define b, = (x, +x..,) 12 for 0< I« 2N*1 since ¢ is a right
sigmoidal function, there exists r > o such that la(x) -1
< 1/N* for xz=r.
Choose a positive integer k such that k/2N >r.

Now we construct a network

i

gx) = X (f(x) — fx_) olk(x—b))

1=1

If xe [ON], then x€ [x;, ,, X;,] for some 1, with 1< i,<2N".
If x> N, then kix - b)) = r and hence lo(k(x-bi)) 1< 1/N*
fori=1,2,... ,2N*"

Then
fe) - g(x)= f(X)—Z((f(Xl)—f(X,fl))
(a(k(x —b; N-1)+ Z(f(x, )=, |
|f(x)‘ + |f(N)| + ‘f(—N)| +
) |fx,) — fix_)| (o(k(x-Db))-1)
<L+L+L+£
8ol 8lo] 8fa] 8]0
<€,
Theorem 3.2: Let o(x) be a bounded left

sigmoidal function on R and f is a continuous
function on such that liin fix) = 0. Then there exist
constants by, ¢; €R and positive integer k, N such that

f(x)—i ¢, o(kx+b,) <& Vxe(—=0)

1=1
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Proof: Let loll = sup lo(x), < < x <0. Since f is uniformly
continuous on R, there exists & > O such that [f(x) - f(y)|
< /8lloll for any x, y €(-, 0) with be-y| <8, then lolx1.

Since lim fi{x) 0, there exists
integer L suléfﬁ]at fi(x)l < e/8lloll forx < L.
Let N = max {L,[1/d +1}, where [*] is the Gauss function.

Now we divide the interval [-N, 0] into 2N° equal
intervals
where - N =x; <x,<... <x,/=0. Defineb, = (x,+x,,)/2 for
0<i<2N-1.

Since 0 1s a left sigmoidal function, there exists r € R
such that lo(x) < 1/N*for x < -r. Choose a positive integer
k such that k/2N > r.

Now construct a network

= an

E

2N°

gx = Y(f(x) — f(x.)) ok(x—b))

i=1

Ifx < -N, thenk (x-b)) < -r and hence, lo(k(x-b))l < 1/N?* for

i=1,.. 2N
|f(x)—g(x)|S|f(x)‘+‘g(x)|
LI fx) - fix) | o
Aol 2 e

L
8] 8[o]

<€,

Ifx e [-N, 0], then x € [x.,, x|, for seme 1, with 1 < 1, <2N°.

Notethatk (x—b) rfor1 =1, ...1,,and kix-b)=<-r

fori =1 JINE

From the fact that

Liwgs oo

15—

S(fix) - fix_)) o(kix-b))

1=1

1g—1

D) fx))o(kx-bn-1) fkx ) + f(x,)

=1

~We have

fex) — g =

ig=1

f(x)—Z(f(xl) — f(x_)) o(kx-b))

+ (fix, ) —fx,) G(k(x‘bm))
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1h?

+ 3 (f(x) - fix_)) o{k(x-b))

i=ig+1

<FeO - fx )| HEN)+

Sl [ofk(x-b)-1)|

+[fix, 0 - fex)
2n?

¥ |fx) —f(x,))||otk(x ~b,)

1=1g+1

otk(x ~b, )|+

£ £ 2e £ 2e
< ——+ ——+——+——o+
8lo|  8lo]  8fof 8lo|" " 8]o]

<€

Definition 3.3: Let f and g be any two functions on R.
The convolution of f and g Ts defined by (f*g) (x)
= [ty atx-y) dy.

R
-t

Forany x€ R, We defime fjp,(x) = /¢ €* ’0<X_<1
0 otherwise

where ¢ 1s chosen so that

[HLeo dx =1 iHL(X) e =1

Fhen, HLeC",.

For each positive mteger k, we define HL,(x) = k HL (k x).
Then _[HLk (x) dx =1 and HIl, & eC, for any
positivE integer k.

For any x€ R, we define

1
HR(x)={¢ &7
0

—lex <0

otherwise

where ¢ is chosen so that Then HR €C”, .

For each positive integer k, we define HR, (x) =k HR (kx).
Then [HL,(x) dx =1 and IR,
intege®k.

for any positive

Lemma 3.4: If f 1s a uniformly continuous function on R,
then HIL,* f converges uniformly to f on R.

Proof : Lete > 0begiven.
Then, there exists
iz f(y)l <e

for any x, v € R with k-yl < 1/N, since f is uniformly

a positive integer N such that

continuous.
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For any x € R and any integer k with k > N, we have

(HL,* £)(x) —f(x)

[kHLOY) (Fix—y) = £(x)) dy‘

< [|HL(z) ‘f(x—i) - f(x) dz
5 k

where z=ky

1

<eg j HL(z)| dz

Q

=€
This shows that HL, * f converges uniformly to

fonR.

Lemma 3.5: If f is uniformly continucus function R, then
HR, * f converges uniformly to f on R.

Proof: Let > 0 be given Then, there exists a positive
integer N such that lfix) - f{y)l <e for any x, y € R with
k-l < 1/N, since f is uniformly contimuous.

For any x € R and any integer k withk > N, we have

ik

j kHR(ky) (f(x-y)- f(x)) dy

() f(x) =

< [|HR(z)| dz

R

f(x—i) - f(x)

= J'\HR(Z)\ f{x%} - f(x)| dz

1]
<e [|HR(z)| dz
-1

=€
This shows that HR, * f converges umformly to
f onR.

Theorem 3.6: Let f be a continuous function on a
bounded closed mterval [-a, 0] of R. If ¢ 15 a bounded
measurable left sigmoidal function on R, then there exist
constants b, ¢, € R and positive integers k, N such that
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ol
fx) — Yoo(kx +b) | <e, a<x <0
i=1

Proof : We construct a umformly continuous function ¢
on R such that

- f on[-a, 0] and £=0 outside of [-a-1, 1].

By lemma, HL,* 7 uniformly converges to 7 on and hence,
HL.* I uniformly converges to f on [-a, 0].
Smee [Hl (x-y) (y) 7 dy <o for each positive integer k, the
convolution
HLy * 7 is approximated by a Riemann sum.

For each positive mteger k, there exist a positive
integer M and constants y,, ¢; fori=1,..., M, such that

(HL,*T e 7§01HLk(x7yl)f(yl) < % (1)

1=1

wherey, e Rfori=1,..., M,

Since HL,, € Cowhere Co denotes the collection of
all continuous functions that covers to 0 as | approaches
to <o, by theorem 3.1, there exist constants &, 3, € R and
a positive integer 1. such that

€
HLo(x-y) = 3oLy + o)< 3 (2)
IR
Choose a positive integer k such that
f(x) - (HI,* ) (x) | <e/3, forx (3

From (1) — (3), we get

fx)- EKCE(}Q) EBJ'_RG(L(X — V)T,
i=1 i k

<[fx) = (HL, * ) +

(L, * DE - Yo HL,x -y

Yo HL (=31~ Yo, ) TB00 Lix-y)=0,)

<€

This completes the proof.

Theorem 3.7: Tet f be a continuous function on a
bounded closed interval [o, b] of R. If ¢ is a bounded
measurable right sigmoidal finction R, then there exist
constants b,,c, € R and positive mtegers k, N such that
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N
fx)- Yo olkxtb)<e, 0<x<b
i=1

Proof: we construct a uniformly continuous function r on
R such thatf fon[o, b] andtf = 0 outside of [-1, b+1].
By Lemma HR;, * 7 uniformly converges to on and Hence
HRy * 7 uniformly converges to f on [0, b]. Since
[HR, (x-y) (y)§dy <eo foreach positive integer k, the
convolution HR . * F is approximated by a Riemann sum.
For each positive mteger k, there exist a positive
integer M, and constant v, ¢, for 1=1,..., M such that

(HR, *f‘)(x)—%q(HRK(x—yi)f (y,) (4)

1=1

£
< —

3
where yi € R for i=1, . My

Since HR € Co, by theorem 3.2, there exist constant
o P€ R and a positive integer L such that

HR (x~y)- 2B, o(Lx-y)to)<e/3 O
1.k
Choose a positive integer k such that
‘f(x) ~(HR, *f ) (x)|<&/3,for xeR (6)

From (4) to (6), we get

f(x)—- ZK‘,C, £y, YRy O(Lx —y ) ey, )
i=1 I3

<|f(x)— (HR, * £)(x)

+

(HR, *F)x) - Po, HRK@c—y,)f(y,)‘

1=1

+

YR (x =33 ~ 3o FEIE, oL -3+ )

<
This completes the proof.

CONCLUSION

Thus we have introduced left sigmoidal signals and
right sigmoidal signals that have the function
approximation”. We have proved that arbitrary
continuous functions n R, with fixed weights in (-, 0)
and (0,22) can be approximated by bounded left sigmoidal

signals and right sigmoidal signals. We used the left
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sigmoidal signals and right sigmoidal with fixed weights
to prove certain function approximation theorem due

to Nahm.
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