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Triangles in Lattice Parabola and Lattice Cubic
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Abstract: This study gives some properties in connection with the triangles inscribed in the lattice parabola

y = x" and the lattice cubic y = x".

Key words: Triangles, Lattice Parabola, Lattice Cubic

INTRODUCTION

A lattice point on a two dimensional coordinate plane
is one whose both components are integers. A lattice
polygon is one whose all the vertices are lattice points.
For example, the points p(-1, 1), 0(0, 0) and Q(1, 1)
constitute a lattice triangle, whose side PQ) = 2 15 a natural
nmumber but the side OP is not. A lattice triangle is called
Heronian if its sides and area are all natural numbers. For
example, the lattice triangle POQ 1s not Heroman, but the
lattice triangle with vertices at (0, 0), (0, 3) and (4, 0) 1s
Heronian.

Sastry'! has studied some interesting properties of
the lattice triangle inscribed in the lattice parabola y = <%,
and raised several related questions for further study.

In this study, we address some of the questions
raised by Sastry""! in connection with the lattice parabola.
We also give some interesting properties for the case of
the lattice cubic y =x°.

Throughout this study, we denote by N the set of all
natural numbers and by Z the set of all mtergers, that 1s,

LATTICE PARABOLA Y = X

In this section, we consider some of the properties of
the lattice triangles inscribed in the Lattice Parabola y = x.
The following result is due to Sastry™:

Lemma 1: The area of the inscribed (lattice) triangle with
vertices at P(p, p°),

Q (g, g)and R(r,r") (with p<q=r) is A=(q—p)(r-q)
(r—p).

From Lemma 1, we see that the area of the
lattice triangle with vertices at P (p, p*), Q{q. g9

and R (r, ) depends only on the differences q—p.
r—qand - p. Let g—p=a,r—q="b(sothatq = p+s,
r=q+b=p+a+b) oy,

Then, the area of the triangle PQRisA=A(a,b)
= ab(a+b) @

Remark 1: From the expression (2) we observe the
followings:

»  The area 1s independent of the position of the point
P on the lattice parabola and depends only on a
and b.

»  The area 1s symmetric with respect ot a and b, that 1s
A (a, b)=A (b, a). Thus, the area of the lattice
triangle with vertices at P(p, p*), Q(p + a, (p + a)*) and
R(p+a+b,(p+a+b)i)is equal to the area of the
triangle whose vertices are P, Q'(p + b, (p + b)*) and
R. Since the triangles POQR and PQ'R are on the
common base PR, it follows that QQ’ is parallel to PR.

»  Af(a, b)isstrctly increasing ma (> 1) forb (> 1) fixed
and 1s strictly increasing in b for a fixed.

Lemma 2: The minimum area of an inscribed triangle is
A= 1. Such triangles are those with vertices at (p, p°),
(P+1,(p+1)") (p+2,(p+2)) foranype Z.

Proof: by virtue of part (3) of remark T, A (a, b) = A (1, 1)
=1 for all a, b € N. Hence, among the inscribed triangles,
the mimmum ones are those witha=q-p=1,b=r—q=
l=q=p+l,r=p+2

We thus get the desired result

Lemma 3: Let P(p, p*), Q(q. ¢°). R(r, ) and S(s, s*) be four
points on the lattice parabola. Then, PQ 1s parallel to R S
if and only if

prq=r—+s
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Further more: if > p, r > p, s > p then Q must be the
furthest pomt from p.

Proof: Since slope of PQ = (g —pV(q-p) = p + q
it follows that PQ is parallel to RS if and only if
ptrgq=r+s.

Next, let 1= p+x, s=pty,q=p+zforsomex, vy,
z€N.

Then, z = x + vy, showing that @ 1s the furthest pomt
from P.
All these complete the proof.

Lemma 4: A parallelogram cannot be embedded in the
lattice parabola.

Proof: Let B(p, p*), Q(p +a, (p + a¥), R(p +a + b,
(p+a+byyandS (s, s°) be points on the lattice parabola
such that QR is parallel to PS. Then, by Lemma 3,
s =p+2a+b But, by Lemma 3, PQ cannot be parallel to
RS, since 2p+a # 2p+3a+Zh.
Hence the lemma.

The following results have been established by

Sastry!'l.

Lemma 5: An inscribed triangle has a right angle at (p, p®)
if and only if its other vertices are (<(p+ 1), (p+1)") and
(P+1,(p+1).

Lemma 6: The area of the triangle formed by P(p, p*),
Q(g, ) anR(r, r’) is the cube of an integer if and only if
p. q and r are in arithmetic progression. We now prove the
following result.

Lemma 7: The only (inscribed lattice) triangles, the area
of each of which 1s a square of an integer, are those with
vertices at (p, p?), (p+ 1, (p+ 1Y and (p + 2, (p + 2)°) where
pe’.

Proof : Let
Ala, b= By ab(a + b)= A% for some A e N.

Then, (aby’ (1. 1y=24
a b

Now(l+l)§2forall a,beN,
a b

with the equality sign if and only if a =b =1 and for other
values of aand b, (l + l) 1s a fraction. Hence, it follows
a

that we must have a=b =1.
This proves the lemma.

Lemmas 2-7, we note that, the minimum area, triangles
are the only triangles whose area can be expressed as a
square of an integer.
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Now, A (n, 1) = n(n + 1), which are the triangular
numbers. From lemmas 6, 7 we see that
A(n,1y=Aifandonlyifn=1,

A, y=p’ifandonlyifn=1,

From (**) and (***), we see that no triangular
number greater than 1 is a perfect cube or a perfect squar.
As has been noted by Sastry!, the triangular numbers
can be realized as areas of successive triangles issuing
from a common vertex. Letting P,, = (m, m*) be the common
vertex, the areas of the triangles in each of the secuences
of non-overlapping triangles.

PPt Puiss P Pa

S B O S LR
and
PoPut Pun PuPuz Pue ,
PrPrs Pants coevernines
Give the sequence of triangular numbers. We

observe further that the triangular numbers can be realized
as areas of successive triangles on a common base,
such as the sequences: Py, Prvi Paves P Pasz Passs
P Pt Pratnr1s
and py Pui Puz Pa Pai Pus
Pu Put Paot

Lemma 8: The only integral solution of the Diophantine
equation 3* + 1 = y* are X=0,Y=2+1.

Proof: Writing the Diophantine equation as (y —x) (y +x)
= 1 and noting that vy — x and y + x are both integers,
exactly one of the following two cases must hold:
Casel:y—x=1l=y+x =x=0,y=1,
Case2:y—x=-l=y+x=x=0,y=-1,

Hence the lemma is proved.

Lemma 9: Let (p(p, p’) and Q(q, q°) be two points on
the lattice parabola. Then, PQ is an integer if and only if
ptq=0.

Proof: Since

PQ=Ja—p@+id—py = |q'1:’|°\ll+(q+p)2

P is an integer if and only if 1 + (q + p)’ is a perfact
square, say, | +{q+p)=v.
The assertion of the lemma now follows from Lemma 8.
We are now 1n a position to prove the following result.

Lemma 10: There 13 no Heromian triangle inscribed in the
lattice parabola.

Proof: If possible, let P(p, p*), Q(q, g*) and R(r, r*) with
(p < q < 1) be the vertices of a Heronian triangle. Now,
since PQ, QR and PR are all mtegers, by virtue of Lemma
9,P+q=0,q+r=0,r+p=0,
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Leading to a contradiction and thereby, establishing
the lemma.
LATTICE CUBIC y =x.

This section deals with some properties of the lattice
triangles inscribed in the lattice cubic y = x°.
We start with the following lemma.

Lemma 11: The area of the inscribed lattice triangle with
vertices at P(p, @), Q(q, ¢*) and R(r, ) (withp < g <r1) is

A=1; @-pT-r-plptgtr|

Proof: The area of the triangle PQR n terms of the
coordinates of its vertices 1s given by the absolute value
of the determinant

Lo

| =
[ R —Y
=D g
=, e T

giving the desired expression after some algebraic
manipulations. From the above lemma, we see that the
points P(p, p*), Q(q. ¢°) and R(r, r’) on the lattice cubic are
collinear if and only if p + q + 1 = 0. It thus follows that
any line through two pomts on the lattice cubic would
mtersect the lattice cubic at a third point. In particular, the
points (-1, -1) (0, 0) and (1, 1) are collinear. We note that
the area of the lattice triangle with vertices P(p, p’), Q(q,
q’) and R(r, 1) is the same as that of the lattice triangle
with vertices P'(-p, p°), Q’'(-q, -@°) and R'(, - ). We
further note that the area of the lattice triangle with
vertices 0(0, 0), P(p, pYland Q(q, q*) is the same as the
areas of the lattice triangles with vertices O, P'(-p, -p"), Q
and 0, P, Q'(-q, -q") P'(-p, -p"), Q and O, P, Q'(-q, -q).

Lemma 12: For any p, q € z,
p’ + pq+ ¢ = 0, where the equality sign holds if and
only ifp=q=20.

Proof: Writing p’ +pq+q' = L [(2p+ q) + 3¢"].
4
We get the desired result.

Lemma 13: The length of the line segment joining any
two points on the lattice cubic cannot be an nteger and
consequently, no Heronian triangle can be formed by
joining points on the lattice cubic.

Proof: Let P(p, p’) Q(q, q°) be any two peints on the
lattice cubie.
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Then. PQ = Jiq —py +(¢® —p'r

R R R
But, by Lemma 12,

p’+pgt+q >0ifp+q 3

So that, by Lemma 8, (1 + (p* + pgq+ q°)") cannot be a
perfect square, Hence, PQ cannot be an integer.

The remaining part of the lemma follows from the
above result. Since the slope of the line joimng the pomts
P(p, p’) and Q(g, q') on the lattice cubic is p* + pq + ', it
follows from (3) that the line PQ makes an acute angle with
the positive x-axis and further more, the line PQ can never
be parallel to the co ordinate axes. Another consequence
of (3) is the following.

Lemma 14: No right-angled triangle can be formed by
joining three points on the lattice cubic.

Proof: Let P(p, p’) Q(q, q°) and R(r, ) be three points on
the lattice cubic such that the angle POR is a right angle.
Then, we must have (p*+ pq+ ¢’ )Xq’ + qr +1°) =-1.

But, by (3), each factor on the left hand side of the
above relationship is positive. Thus we are led to a
contradiction, establishing the lemma.

As a consequence of the above lemma, we see that
no square can be embedded in the lattice cubic; in fact, we
have the stronger result that no parallelogram can be
embedded in that lattice cubic (cf: lemma 4.)

Letq—p=m,r—q=nfor somem, neN. “h

Then, by Lemma 11, the area of the lattice triangle
with vertices at the points P(p, p*), Q(q, q°) and R(r, r’) on
the lattice cubic (with p < q <<r) is given by

A=A{(p m n =% mn(m+n) [3p+2m+n|:
m,neN,PeZ 5

From the above expression, we see that the value of
the area of the triangle PQR depends on the position of
the point P as well as the differences m and n. Tt may be
remarked here that, for p and n fixed, A (p, m, n) 1s not
necessarily increasing in m. For example, though

A(2,23)=15>6=A(2,1,3),

Weseethat A(-2,2, 2)=0<6=A(-2,1,2),
Similarly, for p and m fixed, A(p, m, n) 1s not
necessarily increasing in n.
Now, since
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Apm+ 1, n)=%m+Inm+n+l)[3p+2m+
n + 2], after laborious calculations, we would have the
following expression
Alp,m+1,n)

Ap,mn)+Ap+m+n+Dif3p+n+220
Ap,m,n) —Alp,Ln)+3mn(p+m+n+ Dif -2m<3p+n<-2
“Alp,mn)—Alp, L)+ 3mm(p+m+n+1),if -2 <3p+2m+n=<0
Alp,m,n)+A(p,Ln) - 3mn{p+m+n+1),if 3p+2m+n+ 2<0

©

The above relation ship gives the expression of
A(p, m + 1, n) in terms of A(p, m. n) Similarly, after
laborious calculations, we would have the following
expression giving A(p, m, n + 1) in terms of A(p, m, n).
Alp,m,n +1)

We now prove the following result.

Ap.mn)+Ap, mD+3Im2p+ 2mt+n+1)/ 2if3p+2m+ 120
Ap.mn)+Ap, mD+3mn2p+ 2m+n+1)/ 2if —n <3p+2m<-1
“Apmn)-Ap,mD+3m(Zp+ 2m+n+1)/2if —1<3p+ 2m+n <0
Ap.mn)-+Ap, mD+3mn2p+ 2m+n+1)/ 2if 3p+ 2m+n+1<0
G
Lemma 15: The area of the triangle formed by any three
points P(p, p*), Q(q, ') and R(r, 1) (with p < q <1) on the
lattice cubic is a multiple of 3, that is,
Alp,m,n) =3l wherele §0,1,2, ... ...
Proof: We fix p and then prove by double nduction on m
and n. Since
Alp.m, m)=3m’p+m|;pezmeN. @®
We see that the lemma is valid whenm =n=1. Now,
assuming the validity of the result for all m’ and n’ with 1
“m’=m, 1 <n’ <n, wsee, by virtue of (6) and (7), that the
result 1s true for (m + 1, n) and (m, n +1) as well. This
completes the induction. We have already mentioned that
the pomnts (-1, -1), (0, 0) and (1, 1) on the lattice cubic are
collinear (with the area bounded being 0); the next
minmum- area triangle (with area 3) 1s given, by virtue of
(), bym =n=1, p= 0, which is the triangle formed by
the pomnts (0, 0) (1, 1) and (2, &) (another triangle of area
3 is obtained by the points (-1, -1), (0, 0) and (-2, -8),
However, there 1s still another triangle of area 3; thus
correspond to the case when p=-1, m =1, n= 2 (as may
be checked from (5) and the resulting triangle is obtained
by the points (-1, - 1), (0, 0) and (2, 8) and hence, the
fourth triangle of area 3 1s obtained by the pomts (-2, -8),
(0, 0) and (1, 1). However thus, there are four triangles,

each having area 3 and it may easily be checked that these
are the only triangles. There are six triangles, each of area
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6 and these are obtained by the points (1) (1, 1), (2, 8), (3,
270, (2D (-3,-27),¢-2,-8), (- L- 1. 3) (-1, -1), (1, 1), (2. 8), (4)
(_23 _8) (_13 _1)= (1= 1) (5)= (_23 _8)3 (_13 _1)= (2= 8): (6) (_2: _8):
(1, 1), (2, 8). However, there are only two triangles;
namely, those formed y the points (1), (2, 8), (3, 27), (4, 64)
and (2) (-4, -64), (-3, -27), (-2, -8), of area 9 each.

Lemma 16: A parallelogram cannot be embedded in a
lattice cubic.

Proof: Let (P(p, p*). Q(q, q’), R(r, 1’) and (s, s*) be points
on the lattice cubic with O < p < q <r <, such that QR 1s
parallel to PS. Then,

g tgr+rf=p +ps+s’ E)]
Now, if PQ 1s parallel to RS, then
Ptpgtg =r+rs+s’ {*)

Adding (9) and (*) side-wise, we get, after a bit of

algebraic calculations

A+ + (@] =s[p+s)+@+s)] (%)
But, by our choice

s> pts>ptqg,rts=q+tr,
and hence, the relationship (**) 13 absurd. Consequently,
QR cannot be parallel; to PS.

It may be mentioned here that, given any two points
P(p, p") and (Q(q, q") (with p # 0, g # 0, - p) on the lattice
cubic, we can always find another line parallel to PQ and
intersecting the lattice cubic, namely, the line joining the
points P’ (-p, -p’) and Q" (-q, -q’)

Now, let P(p, p*) (p # 0) be any point on the lattice
cubic. Then, the line PO would intersect the lattice cubic
at the point p’ (-p, -p*). Let Q(q, q*) and R(r, r’) (with q #
0, £p,r#0,£p £ g be two points on the lattice cubic
such that QR is parallel to POP’. This results in the
following Diophantine equation:

P=g+q+r, (10)
or equivalently,
4p* = (2q+1) + 31 (11)
with the two sets of trivial solutions
p=tx,2q+r=xx,1= *+x, x€N (11a)
p==x,2q+r=+2x,r=0, xeN (11b)

We note that, for our purpose, the trivial solutions
(11a-b) are not acceptable. Thus the problem of finding
the lnes parallel to POP’ 1s equivalent to the problem of
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finding the nontrivial solutions of the Diophantine
equation (10). Tt can be seen that, forp=1, 2, 3, 4, 5, 6 the
trivial solutions are the only solutions of the Dipohantine
equation (10, however, for p = 7, the non- trivial solutions
are

(1)q=31=5(2)q=3,r=-8,(3)q=5,r=-8,(4)q=8,
r=-5;
(5)q=-3,1=-5,(6)q=-3,1=8;(7)q=-51=8,(8)q=-8,
r=2>5.

From the above solutions, we get two lines, namely,
the line through the points (3, 27), (5, 125) and (-8, - 512)
and the line through the points (-3, -27), (-5, -125) and (8,
512), each of which is parallel to the line through 0(0,0)
and P(7, 343).

CONCLUSIONS

In connection with the lattice parabola, the following
problems have been proposed by Sastry™:

(1) Characterize two triangles whose areas are i a given
ratio,

Determine the parabolic segments whose lattice point
content is a square. The problem of finding the lattice
point content of the portion of the lattice parabola
below one of its chords has been treated by
DeTemple”, using Pick’s theorem... In case of the
lattice cubic, some problems of interest are given
below:

From Lemma 15, we see that

A(p, m, n) =31, Te {0, 1,2, ... I

For any fixed value of 1, characterize all the triangles
whose areas equal 31, that is, determine all p, m and n

such that

(2

(1)

1 mn(m +n).|3p+2m +n| =3I
2

We have seen that, for I =1, 2, 3, there are,
respectively four, six and two triangles. Since A(p, m, n)
= 3m’|p+m|=3I
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We see that two triangles, each of area 3 1, correspond to
m=1lp=l-mandm=1,p=-(1 +m).

(2) Characterize all the trmangles whose area 13 a

square, that is, determine all p, m and n such that

Alp, m. 1) = .

By Lemma 15, 3 must divide i, that is, i must be of
the form 3, T ¢ N.

(3) Characterize all the triangles whose area is a cube,
that, determine all p, m and n such that

A(p, m, m) = A’. Here also, by Lemma 15, A must be of
the form 31, I e N.

(4) Determine all the lines parallel to the line through
0(0, 0) and P(p, p*), p € N. We have shown that, for p
=1,2,3, 4,5, 6, there are no other lines, while forp =
7, there are exactly two lines, each parallel to OP.
Clearly, for p =71, with T € N, we would have two
lines parallel to OP and the problem is to find other
values of p with such a property. As has already
been stated, the problem of finding lines parallel to
OP is equivalent to the problem of solving the
Diophantine equation (10).

Correspending to any line through the points (p, p*),
(. q) and (<(p+q). - (p+q)") with p # O, q # 0, there
exists a line parallel to the original line, namely, the
line through the points (-p, - p’) and (-q. -q’). The
question 1s: Is there any third line parallel to these

(5)

two lines?
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