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Analysis of Different Solutions to Multivariable Constrained Predictive Control:

Application to A Distillation Process

M. Sedraoui and 3. Filali
Institute of Electronics, University of Constantine, Route d” Ain El Bey, Constantine Algeria

Abstract: Generalised predictive control algorithms are powerful control design methods widely applied to

industrial processes. This approach is applied for control of an industrial distillation column. However, there

1s no easy way to solve the problem of constraints. This study presents an application of different methods of

optimisation to constrained generalised predictive control, in order to achieve optimal performance. We show
how these optimisations methods can be applied to solve the constrained generalised predictive control
efficiently and with less computation burden than that of other methods.
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INTRODUCTION

Generalised Predictive Control (GPC) algorithms
which are first proposed under various names by several
groups of workers Cutler and Ramalker', Yedstie!”,
Clarke et al', de Keyzer and Van Cauwenberghe!”
constitute a class of powerful control algorithms that have
been widely applied to industriel processes. The
formulations of constrained optimization problem have
been proposed by Chang and Seborg™, Campo and
Morari”, Dave et all”, Ricker” and Kumetsnov and
Clark™. Shell Oil has used the direct approach, QDMC!™,
for solving the constrained optimization problem involved
in the control of petroleum processes. In recent year the
predictive control has become a very important area of
research because through it’s good performance and
robustness provided that the tuning parameters have
been properly selected. Controllers based on this method
are capable to control difficult processes, such as
processes with long time delay, non-minimum phase and
unstable processes. The controllers based on the
prediction theory also exhibit remarkable robustness with
respect to model mismatch™'. But there is still a problem
to assure a reasonable control action in the case of large
non-linearity with changing parameters and technological
restrictions.

In this study, we present an application of different
solutions to the constramed model based predictive
generalized control based on a multidimensional version
of this method. Using constraints in order to tune specific
controllers has already been considered i several works.
Kuznetsov and Clarke™ have used constrained GPC for
improving controlled plants. Ishikawa et al."” considered

a practical method of removing ill-conditioning in
industrial constrained predictive control; the resulting
controller can suppress the excessive mput movements
and improve the control performance. Abou-Teyab et af.!™
also used constrained multivarible predictive control to
eliminate the large cycling in the product composition in
a distillation column. This list shows that CGPC 1s very
important m the control arena.

The study is organised as follows. In the first section,
we review one classical formulation of GPC. Tt should be
pointed out, however, that similar ideas can also be
applied to variants of thus GPC formulation, as they have
been proposed in other studies. In the second section, we
describe the principle of constrained predictive as applied
to control system, while the third section describes the
application of the different methods of optimisation
algorithm to handle the constraints in the GPC.

REVIEW OF GPC

Generalised Predictive Control(GPC): The GPC method
was proposed by Clark et ol and has been implemented
together with other prediction control strategies in many
industriel applications. In classical representation one
supposes that a model of the linear (or linearised plant) is
given in the following autoregressive moving average
form with exogenous inputs:

A(zDAEy(®) = B(zHAEZ ut-1+C(zet) (1)
Where: u(t), y(t) and e(t) are the mput signal, output

signal and disturbance process, respectively, at tune t
A (zh, B(z"), C(z") are polynomials in the unit delay
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operator z' with A and C monic. The role of the A
operator (A = 1-z') is to ensure integral action of the
controller m order to cancel the effect of step varying
output disturbances. The GPC algorithm consists of
applying a control sequence to minimise the following
multistage cost function defined as follows:

Tuh=ef ¥ i S [AurgF @

Subject to Au(ttj+N,) = 0, j 0,1.... In this
expression, r{t+]) describes the future reference trajectory,
N, 18 called the prediction horizon, N <N, is the control
horizon, A is a parameter which wheights the relative
importance of control effort with respect to output error
and € denotes the mathematical expectation in a
stochastic framework.

The GPC strategy may appear at first sight as an open
loop control policy, since Nu future control increments
are computed explicitly through the minimisation of
Eq. 2, However at time t one solves this optimisation
problem with criterion T (u, t) for control strategy  {Au(t+))
j= 0,..N,-1 tbut one applies only the first element,
u(t) = u(t-1)+Au(t) and the control optimization process is
carried over again at time t+1 with the criterion j(u, t+1).
This 1s called a receding horizon control strategy.

CONSTRAINED GPC

In constrained control, a set of mnequalities may be
added to the control objective to limit the variations of
certain variables to a given range.

var,,, svar(ttj)<var,,,, 1= N,....N; (3
where var(tt]) is a variable under restriction.

The maimn objectives of constrained predictive control
are set pomt tracking and prevention/reduction of
constrained transgressions.

The constraints can be equalities and/or inequalities:

Equality Constraints are wusually end-pomt
constraints and are generally used to ensure stability
in certain stabilizing strategies such as Clark and
Scattolini™ or Kouvaritakis e al.!'.

Inequality constraimnts, which are usually interval
constraints used to represent input/output limitations
and performance specification. The introduction of
inequality constramnts raises mnportant difficulties,
such as how to calculate the constramed optimal
control, since there is no more analytical solution to
the problem of the cost function minimization subject
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to these inequalities. There are several algorithms
solving constrained problems exactly and within a
fimte number of steps. They can be divided mto
those based on the computation of Lagrange
multipliers"™'” and those reducing a QP problem to
non-negative least squares!'?.
different approaches to tackle constrained GPC i1s
given™.

A review of the

DIFFERENT SOLUTIONS PROPOSED FOR
MULTIVARIABLE CASES

Constrainedgeneralised predictive control using
Dichotomy method.™; Using the dichctomy method in
constrained predictive control, first we must find the
feasible region Only those constramnts that limit the
feasible region of the space need to be taken into account.
The method used for constraints reduction is given ™.
Proposed Algorithm:

Stepl: Compute diophantine, G, fco.

Step 2: Determine the feasible region for AU, the min
and max limits of Au, Au=1... N,

Step 3: Take the median of each interval and get 2x
N, imtervals, [XuioX el (i Xl s Koo Xaine | [ Xamin %)

Step 4: Compute the averages of each interval
obtained.

Step 5: Permute the averages obtained and get a
matrice of dimension; (2t °f veiley & pvar the
number of permutations 1s equal to the munber of
transfer functions i.e,, 2mwberof vaisble:

Step 6: At each line of the matrix, compute the cost
function (2): We obtain a vector that contains the
values of J, for AU, 1=1...2"

Step 7: At time t, take Au that gives the better
mimmun. See m to interval AU belongs.

Step 8: Go to Step, with Au. The number of loops
depends on the precision we want and the value of
Kiao X

Step 9: Take AU = [Au(t), Au(t+1), Au(t+N,-1)] and
compute the control input signal u(t)=u(t-1)+Au(t) to
feed the system.

The Zoutendjik method: We proposed an iterative
approach based on the method of Zoutendjik mncluding
the following points'™:

For every sampling period, the starting point 1s
chosen so that all required constramts become
saturated.

We use a search direction ensuring a good
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orientation of the search vector (d) toward the
minimum of the objective function f (x).

*  The step of displacement 1s calculated so that it leads
every time to the decrease of the objective function.

¢ Stage 1: Initialization:

*  Stage 2: The direction of search d, 1s obtained from:
forj=1,2,. ..
{d):Min d’ Vi(x,) dHV(x) dHi(x,)

¢ Stage 3: The step of displacement is obtained from:
(et Min f (x+ed,) Subject to: O<a<1/2.
And the new solution 1s obtained by: x,,,= x4, d,

+  Stage 4: if | f(x, ) |<| {3 |, putk=k+] and to go to the
stage 01 Otherwise end. (x, in this case is the solution
of the problem proposed).

Economical methods: Using economical method we can
give also a solution to the constrained predictive control
for multidimensicnal systems "®. This method is used for
obtaimng an approximate optimum with respect to & of the
function g(e) = fixtoedy) arising in the gradient
minmmisation of f{x).

GRADIANT CONJUGATE METHOD

Conjugate Direction Methods: The general principle, we
are dealing with are iterative methods which, when applied
to a quadratic finction of n variables, lead to the optimum
in a most n stages.

Application to the predictive control: Usmng the conjugate
gradient method in constrained predictive control, first we
must find the feasible region®.

At each sampling period, we compute the control
mcrement using the comjugate gradient method, if the
solution satisfies the constraints it 1s implemented,
otherwise it is replaced by the appropriate limits obtained

from the constrained reduction method.
The proposed Algorithm can be described as follows:

¢ Step 1: Initialization of y and u, we give the values of
N, N, Ny, A

*  Step 2: Compute diophantine, G, fco.

¢ Step 3: Determine the feasible region for AU
Compute Au by gradient conjugate method.

*  Step 4: At each line of the matrix, compute the cost
function (2):

¢« Step 5: At time t, take Au that gives the better
minimum.

*  Step 6: Go to Step, with Au. The number of loops
depends on the precision we want and the value of

Xmln’ Xm@(

s Step 7: take AU=[Au(t), Au(t+1), Au(t+N,-1)] and
compute the control input signal
u(t) = ult-1 HAu(t) to feed to the system

The Fibonacci method: The solution based on this
method 13 an approach without calculation of the
derivative, based on an extension the method of
Fibommaci for the convex functions to several variables.
This approach treats the constraints in an explicit manner
while considering them directly in the space of search of
the increment of orders®”.

RESULTS AND DISCUSSION

We propose to test the feasibility of the proposed
methods on a typical example of multl vanable system
with constraints. The system is a distillation column with
two inputs and two outputs, proposed as a benchmark
problem in®!. The two inputs are the reflux and vapcr
boilup rate and the outputs are the distillate and the
bottom product. The aim of the tests will then be to check
whether the all proposed methods are able to solve the
problems of constraints and lead GPC to the optimal
performance and to compare between all the methods. The
model of the system

0.878K e ™® —0.864K ™"

G, (s)=——""1"—, G, (8 =——721"—
n(s) 755 +1 1(®) 755 +1

1.082K e —1.096K &%

G, =——7"1— G, s5i=——"2—
a(®) 755+ 1 2(3) 755+ 1

Kic [0.81.2]; et 6,2[0.01.0]

Under matrix form:
—0.864 | K, 0
—109%6 ] o ke

The given specifications are:

1 {0.878
Gis) =

758 +1|1.082

¢  For the unit step input on the first channel of the
column at t = 0, the output y, (t) and the output v, (t)
must satisfy:
* t>230mny, (=209
¢ Yty (t)<].1: maximum overshoot 10%
o t—o0 0.99<y (t)<].1
« Vit oy, (t) 0.5
o (e -0.01 2y,(1)<0.01
¢ Closed loop stability
¢ The control signal is limited to 200.
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Table 1: Gives a summary of the results where the unsatisfactory results are in bold

Tracking Tnteraction
Inputs The Methods =30 Max =100 Max =100
Zoutendijk 1.13 1.10 1.00 0.41 -0.002
Economical 091 1.21 1.00 0.58 -7.4,10¢
Set pointy; = 1 Qp 0.57 1.48 1.35 0.54 -0.33
Gradient 0.91 1.21 1.00 0.86 -7.5.10
Set pointy, =0 Dichotomie 0.88 128 0.99 0.24-0.001
Fibonacci 0.87 1.28 1.00 0.24 0.005
Zoutendijk 1.10 1.10 1.00 0.50 -0.01
Econornical 0.93 1.17 1.00 0.44 -6,10°
Set point y,=0 Qp 1.10 1.54 112 042 -0.19
Gradient 0.93 1.17 1.00 0.43 -6,10
Set point ¥, =1 Dichotomie 0.95 1.10 0.99 0.38 -0.002
Fibonacci 0.96 1.11 0.99 0.38 -0.011
Table 2: gives a summary of the results where the unsatisfactory results are in bold
Tracking Interaction
Tnputs The methods L=30 max L=100 Max 1=100
Zoutendijk 1.06 1.10 1.02 0.42 -0.01
Economical 0.96 1.21 0.99 0.57 24,104
Set point y;=1 Qp 0.68 1.47 0.86 0.52 0.38
Gradient 0.95 1.20 0.99 1.14 2.5,10*
Set point y, =0 Dichotomie 0.67 1.05 1.04 0.34 -0.02
Fibonacci 0.89 1.15 1.03 0.33 -0.02
Zoutendijk 1.09 1.10 1.01 0.48 -0.02
Economical 0.97 1.17 0.99 0.44 1.9,10*
Set point y,=0 Qp 0.71 1.48 0.57 046 0.167
Gradient 0.97 1.17 0.99 0.42 1.9,10*
Set point ¥, =1 Dichotomie 0.85 1.02 1.01 0.57 -0.03
Fibonacci 0.94 1.09 1.09 0.53 -0.17

ul

I| Guls)

Fig. 1: Bloc diagram of the system

X »

¢ The same specifications are given for the input of the
second channel.

The sampling period is T, = 0.4 min.

The constraints acting on the control increments
are: -12<Au<12; |u|<200 withi=1, 2.

The design parameters were chosen as: (N, N,', N.°,
N AL A= (8,2,10,2,107,107

For nominal case: K, =K, = 1: The references are [y, v.]
=[1 0] then [y,, v.] = [0 1]. Figure 1 and 2 show the results
of the simulation in the nominal case for each of the
method studied. The output is y1 and y2.
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As it can be seen on the figures above, the tracking
of set point by the output using Fibonacci, Gradient,
Dichotomie, Economical and Zoutendyk method 1s the
same, we can see that this result is not obtained by GPC
method using QP. The constraints are satisfied by all
methods, the Zoutendijlc method gives the best result with
low merement and control action.

The comparison of the methods used 1s given 1in
Table 1, in bold are the non satisfactory results.

For the case K; = 1.2 K, = 0.8: References are
[Vor Yl = [1 O] ] then [vy ye] = [0 1], Fig. 3 show the
simulation results.

The same remarks as in the nominal case hold here.
The Fibonacci method and the gradient method give a
better static error (Table 2).

For K, K, = 1.2: The two input references
[¥a ¥.] =[1 0] and ] then [y, v.,] = [0 1], Fig. 4and 5 show
the simulation results (Table 3).

The results for this case show that the stability and
robustness 15 ensured for all optimisation methods.
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However the performance robustness is satisfactory for

the method of Zoutendijk.
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Table 3: a summary of the results where the unsatisfactory results are in bold
Tracking Tnteraction
Inputs Methods =30 max =100 Max =100
Zoutendijk 115 115 0.99 0.42 0.004
Economical 0.98 1.20 0.99 0.57 2.2,10°
Set point y,=1 Qp 022 0.42 019 1.54 112
Gradient 0.98 1.20 0.99 1.13 4.3,10°
Set point y, =0 Dichotomie 0.96 127 1.00 0.22 0.001
Fibonacci 0.96 1.27 0.98 0.22 -0.005
Zoutendijk 1.08 1.10 0.99 0.49 0.01
Econornical 0.99 1.17 0.99 0.44 3.4,10°
Set point y,=0 Qp 1.34 1.69 0.74 0.44 0.04
Gradient 0.99 1.17 0.99 0.43 4.2,10°
Set point ¥, =1 Dichotomie 0.98 1.10 0.99 0.35 -0.001
Fibonacci 0.98 1.10 1.00 0.35 -0.005
Table 4: Gives a summary of the results where the unsatisfactory results are in bold
Tracking Interaction
inputs methods L=30 max L=100 Max 1=100
Zoutendijk 1.07 1.13 1.02 0.40 -0.01
Economical 0.94 1.22 0.99 0.58 0.002
Set point y,=1 Qp 111 132 0.93 0.61 -0.06
Gradient 0.94 1.22 0.99 0.64 0.002
Set point y, =0 Dichotomie 0.63 1.05 1.04 0.35 -0.02
Fibonacci 0.89 115 1.01 0.35 -0.003
Zoutendijk 1.08 1.09 1.01 0.49 -0.02
Economical 0.94 1.18 0.99 0.44 0.001
Set point y,=0 Qp 126 141 114 0.44 -0.19
Gradient 0.94 1.18 0.99 0.43 0.001
Set point ¥, =1 Dichotomie 0.86 1.01 1.01 0.50 -0.03
Fibonacci 0.90 1.05 1.05 0.50 -0.11

From the above results we can draw the following
conclusions:

For the proposed parameters (Nu, N2, A), the GPC
algorithm using the proposed methods gives more
efficient results that QP.

One can see that the gradient method 1s the fasted
with satisfying convergence for most values of gain.
The obtained output with this method have a very
high  overshoot, tlus degrades performance
robustness, the stability robustness obtained with
this method is better than the other methods of
optimisation. The economical method gives the
solution to this problem without taking into account
the imposed constraints i.e the minimum of the
objective function can be found out of the region of
constraints, m this case the mimmum of f{x) takes
maximum or minimum of this region.

For the economical method: the convergence of the
method to the solution 1s ensured, but with an
important computation time compared to the gradient
method, the obtaned point x; 15 very sensitive and
conditioned by the choice of the mitial interval [¢,,,,
O] & bad choice of this interval can lead to the
divergence of the method.
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Fibonacei and Dichotomy are two methods not based
on the calculus of the dervative of the objective
function, the tracking problem 1s very good, but still
fluctuates in an interval of time causing the instability
of the system. This two methods do not converge to
the minimum of f{x) if the feasibility region of
solutions is not found by the method of Sugie. For
the precedent system the Fibonacci method gives
better results than Dichotomie method For the
performances and stability robustness, these two
methods give better results than other the ones but
with gains values K, K.

For Zoutendjik method we obtained good results, the
convergence 1s ensured, but with a longer time of
computation compared to the other methods. The
control increment and control signal are always
found 1n the feasible region with very small values.
For the performances and stability robustness, this
method gives better results whatever the variations
of K,, K, in the both directions

CONCLUSION

In this study, different methods requiring modest

computational ressources and easy to implement have
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been introduced and applied to solve multivariable
constramed generalised predictive control problem.The
constraints on the manipulated and other process
variables need to be satisfied For comparison the
proposed methods have performed well on the binary
distillation column. From the above analysis one can draw
the following results: the proposed methods are reliable in
the sense that the number of iterations 1s controllable, this
is particularly important in real time applications. The
manipulated variables do not violate the constraints. The
results can suggest a systemic way of selecting a method.
For the systems with parameters varying rapidly the
gradient is preferable methods if the solution obtained lies
m the constraint region. Likewise, Fibonacei and
Dichotomie methods areacceptable if the region of
feasibility exists. For the process with rapid dynamic, the
Zoutend)ik method 1s the most interesting.
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