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Abstract: Using Deissler's approach the decay of temperature fluctuations i MHD turbulence before the final
period 1n a rotating system in presence of dust particle 1s studied We have considered correlations between
fluctuating quantities at two and three points. In this case two and three points correlations equations in
rotating system 1s obtained and the set of equation 1s made to determinate by neglecting the quadruple
correlations m comparison to the second and third order correlations. The correlation equations are converted
to spectral form by taking their Fourier-transforms. Finally, integrating the energy spectrum over all wave
numbers, the solution is obtained and this solution gives the energy decay law of temperature fluctuations in
dusty fluid MHD turbulence before the final period in a rotating system.
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INTRODUCTION

Deissler’™? developed a thecry for homogenecus
turbulence, which was valid for times before the final
period. Using Deissler's theory Loeffler and Deissler™”
studied the temperature fluctuations in homogeneous
turbulence before the final period. Following Deissler's
approach Sarker and Islam™ also studied the decay of
temperature fluctuations n homogeneous turbulence
before the final period for the ease of multi-pomt and
multi-time. Sarker and Rahman™ studied the decay of
temperature fluctuations m MHD turbulence before the
final period. Islam and Sarker™ studied the first order
reactant in MHD turbulence before the final period of
decay for the case of multi-point and multi-time. Kumar
and Patel”
homogeneous turbulence before the final period of decay

also studied on fist-order reactant in

for the case of multipoint and multi-time. Sarker and
Islam™ studied the decay of MHD turbulence before the
final peried for the case of multi-point and multi-time.
Sarker and Kishore™ had been done further work along
this same line for the case of multi-point and single time.
They considered two and three-pomt correlations after
neglecting higher order correlation terms compared to the
second-and third-order correlation terms. Also Kishore
and Dixit"”, Kishore and Singh"! discussed the effect
of coriolis force on acceleration covariance in ordinary

and MHD turbulence. Shimomura and Yoshizawal'?

[13,14]

also discussed the statistical analysis of
turbulent viscosity, turbulent scalar flux and turbulent
shear flows respectively in a rotating system by two-scale
direct interaction approach. Sarker and Islam!™! studied
the decay of dusty fluid turbulence before the final period
1n a rotating syster.

By analyzing the above theories we have studied the
decay of temperature fluctuations in dusty fluid MHD
turbulence before the final period in a rotating system.
Here two-and three-point correlation equations have been

Shimomura

considered after neglecting fourth-order correlation terms
in comparison to the second-and third-order correlation
terms. Fmally, the energy decay law of temperature
fluctuations m MHD dusty fluid turbulence before the
final period in a rotating system is obtained.

BASIC EQUATIONS
The equation of motion and continuity for viscous,

incompressible MHD dusty fluid turbulent flow in a
rotating system are given by

%+i(uiuk7hihk):f@+
ot Oxy OX; (1)
2
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and the equation of energy for an incompressible fluid
with constant properties and for negligible frictional
heating

aT aT v T
AN ) )
ot % \P ) Ox0x

The subscripts can take on the values 1, 2 or 3.
Here, u;, turbulent velocity component; h,, magnetic
field fluctuation component,

2

2

wiet) =B+ Lanty l‘ém?
p 2 2

v, dust velocity component total MHD pressure mnclusive
of potential and centrifugal force;

pix.t) hydrodynamic pressure,
p = fluid density,

vV

p., = —, Magnetic prandtl number,
M 7\‘ ?

p, = i, prandtl number,
Y

V' =Xinematic viscosity,

y=— thermal diffusivity,

PC,
b= (411“6)‘1 magnetic diffusivity,
¢, =heat capacity at constant pressure,

), = constant angular velocity components,

€ .
Mk = alternating tensor,

dimension of frequency; N, constant number density of
dust particle,

4

m, =—nR’p.,
H 3 SpS

mass of single spherical dust particle of radius R,,

p, = constant density of the material in dust particle,
X, = Space co-ordinate, the subscripts can take on
the values 1, 2 or 3.

TWO-POINT CORRELATION AND
SPECTRAL EQUATIONS

The mnduction equation of a magnetic field at the
point p is

ch, ch, ou,
L i _hk i

2
. AY & h1 (6)
a o Fox,  fox,

-5
Pu 9% 0%,

and the energy equation at the point P* is

1 P 2
ﬂ ' ﬂ - (l) 0T )]
p. I%,.3%,

a  Fex

Multiplying Eq (6) by T"; and (7) by h,, adding and
taking ensemble average, we get

aHnT) ohT) | ahT)
+u, U ——

ot ax, oy )
b Hu, Ty o 1 32<h1Tj'>+l32<thf>
“oox, Py ox,0x, P, dx0x,
Angular bracket {......... } is used to denote an
ensemble average and the continuity equation is
LU L (9)
axk 6Xk
Substituting Eq. (9) in to Eq.u (8) yields
BhT)  AwhT) GWhT)
ot ax ax}
Huh, T 1 @%hT) 1 8T
— = =y -
2 Py OXdx,  p, Ox 0%,
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Using the transformations

6. 0
ox, O,

8
ar,
and the Chandrasekhar relation!®.

(uh, T = ~(W b T -
Equation (10) become

o 8, duhTh
ST 2£<ukh1TJ>+ ik
1

Now we write Eq. (10) mn spectral form m order to
reduce 1t to an ordinary differential equation by use of the
following three-dimensional Fourier transforms.

k

(11

& (T
arkark

WTE = [ epikn]ak 02

BT = [ oty exp[i(ﬁ,?,ﬂdfc a3

WRTI) = (uh T (1)
@ s Nonn A (14)
= | <¢kwir;(—k»exp[i(k,r)}dK

Equation (14) is obtamed by nterchanging the
subscripts 1 and j and then the pomts p and P'.

Substituting of Eq. (12) to (14) into Eq. (11) leads to
the Spectral equation

)

ik, {2<¢kw1r; K+ T (fqﬂ
15)
1 1., o
(K (g (K)

. |

The tensor Eq. (15) be comes a scalar equation by
contraction of the indices i and |

T

~ a 1 1
AERD g (2000 TR g

o AR ) Ky (k)
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THREE-POINT CORRELATION AND
SPECTRAL EQUATIONS

Similar Procedure can be used to find the three pomts
correlation equation. For this purpose we take the
momentum equation of MHD turbulence at the point P,
the induction equation at the point P' and the energy
Equation at P*" as

du

ot

2 ' an
gu

v——-2¢_ Q u+f(u-v
aX.kaX.k mki m 1 (1 1)
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where
2
,

weet=2e Lo+ Lok
p 2 2

total MHD pressure inclusive of potential and centrifugal

force FOG: hydrodynamic pressure; (Jp, constant
angular velocity components; < s alternating tensor,
Kl

dimemnsion frequency; N, constant number density of dust

" "

particle. ’ "

Multiplying Eq. (19 by * 7> (18)by 77 and (19)
by " hi’, adding and taking ensemble average, one
obtains

uh T L Suu T ahh T A hi T
ot ax, o] o,
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Using the transformations

o 9.,0,0 82 0
6Xk ark 61‘11 ’ aX’l\( 61‘1( | ax'li 1;
into Eq. (20)
T
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In order to write the Eq. (21) to spectral form, we
can define the following six dimensional Fourier
transforms:

Ty = | [ @p ey

@)
epr(ﬁ.h Q.Q)}dﬁdﬁ'
uOTE) = | [ b
(23)
B1(k") exp[’{(k“h 19.9)} dkdk’
BT ) = [ [ BB
o (24)
(12’)>exp[§(12.§+ ﬁ’.?’)}dﬁdﬁ'
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ef(k'))exp{i(k.ﬁ k'.r')}dkdk’
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G (b, Ty = | [ (6,0 k)

—to—co
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8 k)8" (k")) exp {i(k.lﬂr k'.r')} dkdk’

W) = [ [ oBioe!

—e0 —eo

27
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R OTE) = [ [ wBiosr)

exp {

Interchanging the pomts p' and p'° along with the
indices i and j result in the relations
(uuih'T! = (uulhiT) .

(28)

ik 1+ k'.r'}dfcdﬁ'

By use of this fact and Eq. (22)-(28), the Eq. (21) may
be transformed as

1 1
- 1+ —)k* + {1+ —k*+
N1 Pu . .
— v 5 ot BT =
Ok, + e o (29
v v

ik, + 1k )0.0,B,00) — ik, + K, XBB 07 -1k, + k)
(0,0,B,87) + ik, (0,61B87) + ik, + K XyBiE) — F{wBe))

The tensor Eq. (29) can be converted to scalar
equation by contraction of the mdices 1 and j

A+ L)k2 +(1+ L)k’2
P P ¢ |(aBen=ide, +K)

S £

voov
(0.0, P60 ik, + K DPBPPE) — ik, + k)< (0,06
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CLLCY
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If derivative with respect to x 1s taken of
the momentum Eq. (17) for the point p, the
equation multiplied through by hT;” and time
average taken, the resulting equation
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Writing this equation in terms of the independent
variables p and ../

o° 0 o> 9
—+2 + +
cor.or. ar.or! ar. 8rk 6r.’8rk
_ 11 11 <Wh;T”> _ 1 1
s Pyt | @ (32)
8ri8ri ariark ariark
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Now taking the Fourier transforms of Eq. (32)
(lk, + K, + kK, + KK, )
((0.6.B:67 - (BBBOY) (33)

BT =
BB kk, +2k’k + Kk

Equation (33) can be used to elimimate (’YBQ "y from
Eaq. (29)

SOLUTION FOR TIMES
BEFORE THE FINAL PERIOD

Tt is known that equation for final period of decay is
obtained by considering the two-point correlations after
neglecting the 3rd order correlation terms. To study the
decay for times before the final period, the three point
correlations are considered and the quadruple correlation
terms are neglected because the quadruple correlation
terms decays faster than the lower-order correlation terms.

Equation (33) shows that term <’YBlg associated
with the pressure fluctuations should also be neglected.
Thus neglecting all the terms on the right hand side of
Eq (30)

o,
" e}’> A+ w2 a4 L2
i,y M ! @.pien =039
at 2 Emkl Qm 1"1 1
+2kkkk + — v v

where (lu ﬁ’Q'} R<¢ ﬁ’Q} and 1-R=3, here R and S
are arbltrary constant.

Integrating the Eq. (34) between t, and t with inner
multiplication by lg and gives

kk@pp5=k[¢ﬁW}

a2 a2y (35)
Py Pr
exp| —v (t—to)
Q,Emk- Qm 3
2kk’cos@+f1—T

where 0 is the angle between k and k' and <¢1 ﬁi@i’% is
the value of <¢I ﬁer;”> at t= t,.

By letting r* =0 in Eqg. (22) and comparing with
Eq. (13) and (14), we get

(Ot = [ (oBENAK (36)

O = [ 4B e kdK (37)
Substituting Eq. (35), (36) and (37) in Eq. (16), we get

I
oty (kD)

1
2 +v(—+
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AN AN
ik {(d)iﬁ'i@i"ﬂ2<¢k[3{(—k)9{'(—k') )}

Loy uiy —-
Pr

g 9

cexp[ V[t~ 1 )0+ —— k2 + (1 + k2
Py Pr
© mki Cm 18
+2kk'cos8+ 2 ; " }]dk

AN
Now, /' can be expressed in terms of k' and 6 as

— 277:]{’201(COS e )dk’ (Deissler!").
Hence.

dK = —27k'“d(cos0)dK’ (39)

Putting Eq. (39) m Eq. (38) yields
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In order to find the solution completely and following
Loeffler and Deissler™ we assume that

|

where [, is a constant depending on the initial
Substituting Eg. (41) inte Eq. (40) and
completing the integration with respect to cosf one
obtains

+2kk cosO+ 2 INKL —- “mki
v

A
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Multiplying both sides of Eq. (42) by k%, we get

Q= 2Qmk* (y ¥ (k)

6_Q+V(L+LJKZQ_F
pM pr

ot

(43)

where,
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Q= 2Qmk* y ¥ (k) 9
Q is the Magnetic energy Spectrum function.
and
P [ K" Kk Pyexp
2v(t—t ) 0
2 1
—v(t— to)[(l + —)k +(1+—)
Py Pr
2e_,.CQ
K2 okk' 4~ mki“Tm _ ﬁ]
B v (45)
315 .53
2v(t— t I (k==K
V=t YA+ k2 + 1+ k2
0y P A
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Integrating Eq (45) with respect to k’, we have
572 i “mki
BTy n 1S
S Vo S o R (t—ty)
vt -ty v v
(I pp)"?
—v(t—t )1+
xexp) 1 pr )
pM 1+ Pr
15p k* +{ 5p° 3}
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kﬁ
vit-t)

p.
(1+p,)’

pf
(I+p,)

Raacar

The series of Eq. (46) contains only even powers of
k and start with k' and the equation rtepresents the
transfer function arising owing to consideration of
magnetic field at three points at a time.

It 15 interesting to note that if we integrate Eq (46)
over all wave numbers, we find that

Tﬂmzo (47)
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which indicates that the expression for F satisfies the
condition of continuity and homogeneity.

The linear Eq. (43) can be solved to give
7vk2(i + i) vk? (L + l)

Q=exp Pu P |[Fexp| Py B
(t—t,) (t-t,) (48)

dt+ I{k)exp —vkz(i-s- L)(t— t,)
P

M T

where

1K) = Nk’
r

1s a constant of mtegration. Substituting the values of F
from Eq. (46) m to Eq. (48) and integrating with respect to
t, we get
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A1+ p, Yt —t )

Q(k’lt)—N“kem{—vkz(Ul)(t— m}
n P P:
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xexp[—{2 e, Q0 — 5}t —t )]exp {
3p,k4

2V2(t7t0)5f2

pr(7pr - 6)1(6
3v(l+p )t -1,y

. 8/v(3p, - 2p. + 3K°

3(1+p, ¥ fp.

(49)

N{w)

where

N(@)= e iexzdx,

o

oo M=)
p(+p.)

The function has been calculated numerically and
tabulated in"’.
By setting and

F=0, j=i dK =-2nk’d(cos0)dk
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and Q:2T[k2<q11‘tl (I"{)>n Eq (12), we get the

expression  for temperature  energy decay as

(T _TT
2 2

(50)

- [Qriodk
o
Substituting Eq (49) m to (50) and after integration, we get
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Thus the energy decay law for temperature field
fluctuation of dusty flud MHD turbulence 1n a rotating
system before the final period may be written as

(TH=X(t—-t,)7"" +exp[-{2¢,, Q, -8B} Vt-t,)" (52)
where

X: NUPrNZP?V:Z
Wy p, +py)
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Y = 2B, 2y

<T2> is the total energy (the mean square of the

temperature fluctuations) t is the time, x and t, are
constants determimed by the imtial conditions. The
constant Y depends on both initial conditions and the
fluid Prandlt number.

CONCLUSIONS

In Eg. (52) we obtained the decay law of
temperature fluctuations in MHD turbulence before the
final period in a rotating system in presence of dust
particle considering three-point correlation equation after
neglecting quadruple correlation terms. If the fluid is
clean and the system is non-rotating then £ = 0, = 0 the
Eq. (52) becomes.

(TH=X(t-t )"+ Yt -t,)° (53)

which was obtained earlier by Sarker and Rahman'’

In the absence of a magnetic field, magnetic
Prandt] number coincides with the Prandtl number (1.e. p,
= py) and the system is non-rotating with clean fluid the
Eq. (51) becomes

(T Nuprzfz

By Z
= +
2 8J2mv -t )

54
Vit-1,7

which was obtained earlier by Loeffler and Deissler™.

Here we conclude that due to the effect of
rotation in presence of dust particles in the flow field, the
turbulent energy decays more rapidly than the
energy for non-rotating clean fluid.

The 1st term of the right hand side of Eq. (52)
corresponds to the temperature energy for two-point
correlation and second term represents temperature

energy for three-point correlation. For large times the

194

last term in the Eq. (52) becomes negligible, leaving
the-3/2power decay law for the final period. Tf higher order
correlations are considered in the analysis, it appears
that more terms of higher power of time would be added
to the Eq. (52).
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