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Modelling Discrete Fracture Networks using Neuro-Fractal-Stochastic Simulation
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Abstract: Modelling of discrete fracture networles in naturally fractured reservoirs is a complex process that
contains large amount of uncertamty. This study presents a novel methodology that mtegrates various features
of geological, statistical and artificial mtelligence techniques in a nested loop to characterize field fractures and
then to model them. Properties of natural fractures such as size, orientation and aperture are of different scales
and relevancies. Their characterization is, to some extent, technique dependent. Secondary properties such as
fracture density and fractal dimension are therefore defined for better description of fractures’® spatial
distribution. Mathematical relationships between the primary and secondary fracture properties are non-linear
and have not been fully understood. A neural network is incorporated in the proposed methodology to
determine these relationships, by processing field data available from logs and core analyses. Combining the
characterized fracture properties, a nested stochastic techmque is used to simulate different degrees of
heterogeneity and model discrete fracture networks in the whole reservoir. The dual application of neural
network and fractal mathematics in discrete fracture modelling is innovative in this study. The result is expected
to map more closely with the actual physical distribution of fractures and their properties than that are achieved

so far with simplified stochastic-fractal approaches.
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INTRODUCTION

Naturally Fractured Reservoirs (NFR) refer to
geological accumulation of oil, gas, water and geothermal
energy that contain a network of fractures (faults, joints,
cracks, cleats, etc.). It is estimated™ that the U.S. domestic
petroleum targets in NFR could be hundreds to thousands
of trillions of cubic feet; a multibillion-barrel domestic and
mternational o1l resource targets also exist. Because of
mcreasing energy needs throughout the world, recently
these reservoirs have become commercially significant.

Due to geological reasons, many of the NFR possess
very low permeability, which 1s inadequate for economic
production. Therefore, some permeability enhancement
techniques are required. Tt is proposed to activate pre-
existing natural fractures by hydraulic stimulation, instead
of creating a single massive fracture. We postulate that
under appropriate stimulation pressure, a natural fracture
will slip by shear and dilate (hence the phrase 'shear
dilation') to facilitate a flow conduit for hydrocarbon.
Unlike conventional hydraulic fracturing, the fracturing
fluid will require no, or very little, proppants to keep the
conduit open, upon the cessation of injection, as the
conduit will remain open by the frictional resistance of

rough natural fracture surfaces. Field experience with
slowly 1mected and low proppant fluids has been
encouraging™™?, at least for short-term. Underlying
principles of this technique, however, have not been
adequately understood. To complete the design of
reservoir-specific stimulation with mmproved efficiency,
responses of natural fractures under different stimulation
pressures need to be quantified. Reliable model for
reservoir’s Discrete Fracture Network (DFN) 1s essential
and thus, 1s the subject of this study.

A BRIEF REVIEW OF FRACTURE MODELLING

Natural fractures are mechamcal breaks in rocks. They
occur at different scales and are highly heterogeneous.
Rock fracturing is a complicated process, which is
sensitive to changes i geological conditions. Under
lithostatic, flmd pressure, tectonic, thermal and other
geological stresses (e.g. volcanoes, uplifting and salt
intrusion), fractures generally initiate and propagate when
the stresses become equal or greater to the rock strength.
Different geological conditions mduce different fracture
patterns, thus, different NFR characteristics. Most rocks
have simultaneously and sequentially undergone multiple
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Fig. 1: Flowchart of the modelling procedure

deformational events, which eventually result in very
complicated fracture systems™!.

Earlier mathematical models for fracture networks and
flow through them include equivalent continuum
discrete network models™ and hybrid

1M Based on the fractal concept, equivalent
11,12]

models?,

techniques
discontinmm  fractal models are also available!
Recently, attempts have been made to characterize natural
fractures applying fuzzy logic and neural networks, where
an integrated approach is adopted to encompass various
information available from the field" " The data include
seismic, porosity, permeability, lithology, bed thickness,
state of stress, fault patterns and production data. The
outcome 18 a network map of fracture index/intensity for
each discrete block. The approach uses fuzzy logic to
quantify and rank the importance of each geclogical
parameter on fractures; and neural networks to account
for complex, non-linear relationships between these
geological parameters and the fracture index. Thus, it took
mto account the overall effect of fracture network upon
fluid flow in the reservoir with a primary emphasis on
predicting well performance. Their purpose, however, did
not require generation and treatment of discrete fractures,
as the production performance was assessed for the
reservoir at its in-situ condition (i.e., without any
hydraulic stimulation). Thus, the method is not directly
adoptable for the proposed research work though the
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concept of (fuzzy) neural network will be utilized in this
work as described below.

THE PROPOSED MODELLING TECHNIQUE

This study presents a systematic procedure to model
DFN. Output fractures are conditioned to the available
geological, geophysical and engineering data. In order to
achieve this, we first review the field data sources that are
typically available in a petroleum exploration and that
could reveal information about key fracture properties of
location, orientation and size. Statistical distributions of
those properties are then determined by integrating data
from the different sources at different scales. Finally, they
are stochastically simulated to model the fractal-based
DFN. The procedure includes two major computational
modules: Back-Propagation Neural Network (BPNN) and
fractal-stochastic fracture simulation. The overall process
is thus named Neuro-fractal-stochastic simulation (Fig. 1).
Various modules of this process are described mn the
following sections.

DATA SOURCES

In NFR, different field data sources cover different
scales (microscopic to regional) and are of different
resolutions. Moreover, no single tool can provide all
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information needed to fully characterise a NFR. Thus, in
order to portray the multifaceted characteristics of natural
fractures, an integrated approach is required, where all
available field data from wide range of geological,
geophysical, petrophysical, drilling and other sources are
utilised"™”. There are two main types of data sources for
fracture characteristics in NFR.

The first group mcludes seismic, outcrop and other
geological sources, which are used in studying reservoir
geological features. This group of data is at a large
(reservorr) scale, with resolution ranges from a few inches
to several feet. They reveal reservoir structure, bed
thickness, lithology and curvature of various formations.
These factors are directly related to several fracture
characteristics, such as fracture length, spacing,
orientation, density!™'¥. Seismic data show orientation
and size of major faults. Moreover, smaller-scale fracture
orientation and density can be interpreted from classical
P-wave seismic attribute maps, such as AVO and/or shear
wave attributes. Outcrops data also describe various
fracture characteristics, such as orientation, size and
spacing, at sub-seismic scald"™ .

The other group contains the data available at the
well site, such as log and core derived data, drilling and
well testing!"*'". Among the most efficient logging tools
for fracture characterization are dip meter (giving fracture
orientation), borehole televiewer, formation micro scanner
and core. It 13 possible to determine fracture properties
such as dip, strike, aperture, density and fractal dimension
(via the box counting method). Wellbore data are of
higher resolution (fraction of an inch) and more related to
small-scale fractures.

NEURAL NETWORK CHARACTERIZATION

Inter-relationships between the different data sources
and their relevance on fracture characterization are very
complicated. The problem arises when the secondary
mput properties (fractal dimension, fracture density) are
computed, where an integration of the data sources is
required. The task of data integration is fulfilled by an
artificial intelligence tool of Neural Network (NN). A NN
1s capable of integrating different data sources of different
nature to delineate the required relationships!'®.

Neural networks use a set of processing elements
(or nodes) that are similar to human brain neurons. These
nodes are mterconnected m a network that can then
identify patterns/ relationships in the input data*'”. In
other words, NN can learn from experience. The BPNN is
a supervised learning technique, which can learn almost
any functions regardless of noise in the data or the
complexity of their relationships. It leamns through an
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Fig. 2: Three-layer BPNN with 5 hidden neurons used in
this study. W1 and W2 are the two sets of
weighting factors

iterative procedure: Through example. The input data are
combined with a set of weighting factors (set W1 and set
W2), through hidden layers, to estimate the outputs.
Figure 2 shows the sketch model of a BPNN. The aim of
the training process is to continually adjusting the
weighting factors W1, W2 so as the error in the outputs
1s mummized (better fit the model).

From available field data, fracture density (fracture
area in unit volume, m*/m”) can be calculated directly and
fractal dimension can be estimated using the box-counting
method!"™. However, the calculations are cumbersome for
every block of the reservoir. Moreover, the necessary
data are only available at wellbores, such as borehole
logs, cores, maging and borehole
televiewer. Thus, the NN technique 1s applied in
computing distribution of the two key fracture properties:
fracture density and fractal dimensions. Using these
wellbore values for training and validation, NN estimates
fracture density and fractal dimension values over the
whole reservoir. This procedure is expected to make DFN
modelling significantly efficient.

MICTO-8e1sImic

SPATIAL NESTED MODELLING

We integrate a fractal-stochastic model with a nested
geological modelling technique. There are not many data
sources for fracture size (1e. length, area and aperture).
The lack of reliable field measurements makes it difficult to
be analysed statistically. Fractal geometry realizes proper
mathematical framework for characterizing and simulating
geometry of many complex non-Euclidean shapes found
in nature. It has been proved especially suitable for
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Fig. 3: Circular dizsc model of fracture: Characterized by
cenfre, radius and orientation of the fracture plane-
{a) in a cubic block of zide length L, (b) normalized
block of unit length in (x, ¥, 2) coordinate system

natural discontinuities such as fractures™. According
to this methodology, a cubic block of edge length L
is considered (Fig. 3). Within this rock mass, the centres
of penny-shaped (circular) fractures are generated
stochastically. The radii of randomly distributed fractures
are then defined as eq. 1, where, ¢ is a randomly
distributed uniform deviate between 0 and 1; r, is the
radius of a fracture for a random value of a; r, andr,, are
the minimum and the maximum radii of fractures observed
in the reservoir and D is the fractal dimension. Fracture
orientations of these generated fractures are conditioned
statistically according to the observed dip and azimuth.
Eq. 1 is executed repeatedly with different values of o
until the observed fracture density iz achieved by the
generated fractures withinr_, andr_.

We usea nested geological modelling methodology™
to take into account the DFN” multi-scaled characteristics
and high degree of heterogeneity. The modelling is carried
out in different steps, going from larger to smaller scales.
In this manner, a framework is first built and details are
added subsequently. The above stochastic modelling is
repeated twice: the first step simulates the major faults of
the whole reservoir while the second one simulates
smaller-scaled fractures within each discrete block.

APPLICATIONS

We perform a case study to demonstrate capability of
the proposed model. Firstly, the fracture density and
fractal dimension for simulating blocks in the reservoir are
estimated by a BPNN. A set of input data of seismic
velocity, amplitude and lithology index is chosen (among
the relevant data sources mentioned earlier), as they are
widely available, reliable and of high resolution. The data
are available for the whole reservoir (Fig. 4, 5 and 6).

Through training, the NN establishes the complex
relati onships between input data, fractal dimension and
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Fig. 4: Seismic velocity 3D data (m/s). W1 to W& show
the locations of existing wells

Fig. 5: Seismic amplitude 3D data (m)

Fig. 6: Lithology index 3D data

Table 1: Difference in test set performance

Iean squared Errors Difference
All inputs 0.0431

Seismic velocity 0.3355 -0.2364
Seismic amplitude 0.2232 -0.1801
Lithology index 0.3667 -0.3176

fracture density. It then generates spatial distributions of
fractal dimension and fracture density in the reservoir
(Fig. 7 and 8).

Comparing the computed outputs with the input data
(Fig. 9) we can test accuracy of the BPNN. Both graphs
give close correlations, with R-squared being very close
to 1. Moreover, by analysing the weighting factor sets
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Table 2: Input data for the model: data are available for 4 different regions of different fracture charactenistics

Owersll (nested

Rock and fracture class Clasgs 1 Classz 2 Classz 3 Class 4 modelling)
Rock propertiesVoung's modulus (GPa) 60 60 60 60 60
Poisson’s ratio 0.25 n.2s 0.2s 0.25 0.2s
Density (Kgfm3) 2700 2700 2700 2700 2700
Fracture basic foction angle (Degree) 40 40 40 40 40
Shear dil aion angle (Degree) 3 3 3 4 4

90% closure stress (MPa) 20 20 30 30 30
Fractures properties

Fractal dimension, 2 2.57 2.54 2.50 2.47 2.52
Fracture density {m2/m3) 0.357 0.364 0.300 0.141 0.052
Fracture setsl!®]

Weighting (%6) 60 60 50 40 All sets
Dip range (Degree) 25-30 60-70 40 30

Strike range (Degree) 165-175 20-25 40 230

Weighting (%6) 50 25

Dip range (Degree) 25-35 60

Strike range (Degree) 340-350 90-130

Smallest fractures radius {m) 10 10 10 10 100
Largest fractures radius (m) 100 100 1ao0 100 500
Stress

Vertical stress, oy (MPa) 50 50 50 50 50
Mazimum horizontal stress, 6 z(IMPa) ili] a0 60 i1} 60
Minimum horizontal stress, & (M Pa) 35 35 35 35 35
Stress gradient

Vertical stress (Mpam™) 0.0333 0.0333 0.0333 0.0333 0.0333
Mazximum horizontal stress (Mpa m— 5 0.0682 0.0682 0.0682 0.0682 0.0682
Minimum honzontal stress (Mpam™) 0.0426 0.0426 0.0426 0.0426 0.0426
Direction of maximum horizontal iz-situ stress, 0z (Degree) 100 100 1ao0 100 100
Fluid properties

Density (kgfm?) 1000 1001 1002 1003 1004
Viscosity (Pa.s) 3x10-4 3x10-5 3x10-6 3z10-7 3x10-8
Hydrostatic fluid pressure (MPa) 19 19 19 19 19
Well and reservoir data

Well radius (m) 0.2 0.2 0.2 0.2 0.2
Mumber of wells 3

Reservoir depth {m) 2000

Model size (3D m*m*m) 1000* 1000*500

Fig 7: Characterized 3D Fractal dimension

W1 and W2, we can also understand the effects of
different inputs on the two outputs. Table 1 confirms the
importance of three chosen inputs, with lithology index
is the most dominant factor while seismic amplitude is
the least.

The result fractal dimension and fracture density are
important data for the next step: fractal-stochastic fracture
generation. There are also other data, such as rock
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Fig. 8: Characterised 3D fracture density (m2/m3)
properties, fracture orientation, class
approximate length and stress data.

The fracture orientation distribution contains dip,
azimuth and probability that occurs (weighting). It is
obtained from seismic profiles, outcrops, measurements
on cores and borehole images. The DFN iz divided into
four different classes, based on distinction in their
geological, lithological and physical (including fractal)

properties,
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Fig. 9: NN results: Plot of estimated fracture density and
the input data. R-squaredis 0.955

Fig. 10: Result DFN (Small, medium fractures)

properties. Class detfails are basic friction angle, shear
dilation angle at zero normal stress, initial relative
offset, largest fracture and smallest fracture to simulate,
largest coherent slip patch, fractal dimension, 9096 normal
closure reference stress and cohesion. Those are also
computed directly from the same data sources as
fracture orientation (Table 2).

In a nested procedure, major faults (bigger-radius
fractures) are firstly generated. Fractures from 100 m to
500 m in radii are generated in the entire reservoir. In the
second run, we gimulate fractures whose radii are smaller
than 100 m, in each smaller region within the reservoir.
Different regions have different geological and fracture
properties. The final output is the reservoir’s detailed and
realistic DFN (Fig. 10).

CONCLUSIONS

In thiz study, an intelligent efficient method is
developed to extrapolate well data throughout the whole
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reservoir and to derive important properties (fractal
dimension, fracture density) required for fracture
modelling. Moreover, through integration of data from
different sources, NN, fractal analysiz and stochastic
analysis techniques, a hybrid neuro-fractal-stochastic
model is derived. The dezign of an artificial intelligent NN,
together with fractal mathematics, for DFN application is
innovative in this study. In addition, incorporation of
nested simulation concept has enhanced the model’s
versatility. The DFN modelling process can be repeated
and improved throughout the development of a field. The
more data available, the more accurate it expected to be.
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