Journal of Engineering and Applied Sciences 1 (2): 103-111, 2006

© Medwell Online, 2006

Image Processing Algorithms on Reconfigurable Architecture Using Handel-C

Muthukumar Venkatesan and Daggu Venkateshwar Rao
Department of Electrical and Computer Engineering,
University of Nevada Las Vegas, Las Vegas, NV 89154, USA

Abstract: Computer mampulation of images 1s generally defined as Digital Image Processing (DIP). DIP 18
employed in variety of applications, including video surveillance, target recognition and image enhancement.
Some of the algorithms used in image processing include convolution, edge detection and contrast
enhancement. These are usually implemented in software but may also be implemented in special purpose
hardware to reduce speed. In this work the canny edge detection architecture has been developed using
reconfigurable architecture and hardware modeled using a C-like hardware language called Handle-C. The
proposed architecture is capable of producing one edge-pixel every clock cycle. The hardware modeled was
implemented using the DK2 IDE tool on the RC1000 Xilinx Vertex FPGA based board. The algorithm was tested
on standard umage processing benchmarks and significances of the result are discussed.

Key words: ITmage processing, architecture, handel-¢

INTRODUCTION

Digital image processing 1s an ever expanding and
dynamic area with applications reaching out into our
everyday life such as medicine, space exploration,
surveillance, authentication, automated mdustry
mspection and many more areas. Applications such as
these involve different processes like image enhancement
and object detection™. Implementing such applications on
a generable purpose computer can be easier, but not very
time efficient due to additional constraints on memory and
other peripheral devices. Application specific hardware
implementation offers much greater speed than a software
implementation. With advances in the VLSI (Very Large
Scale Integrated) technology hardware implementation
has become an attractive alternative. Implementing
complex computation tasks on hardware and by exploiting
the parallelism and pipelimng i algorithms vield
significant reduction in execution times,

There are two types of technologies available for
hardware design. Full custom hardware design also called
as Application Specific Integrated Circuits (ASIC) and
semi custom hardware device, which are programmable
devices like Digital Signal Processors (DSP’s) and Field
Programmable Gate Arrays (FPGA’s). Full custom ASIC
design offers highest performance, but the complexity and
the cost associated with the design is very high. The
ASIC design cannot be changed and the design time is
also very high. ASIC designs are used in high volume
commercial applications. In addition, if an error exist n the
hardware design, once the design 1s fabricated, the

103

product goes useless. DSP’s are a class of hardware
devices that fall somewhere between an ASIC and a PC n
terms of the performance and the design complexity.
DSP’s are specialized microprocessor, typically
programmed in C, perhaps with assembly code for
performance. It is well suited to extremely complex math
intensive tasks such as image processing. Hardware
design knowledge is still required, but the learning curve
is much lower than some other design choices™. Field
Programmable Gate Arrays are reconfigurable devices.
Hardware design techniques such as parallelism and
pipelining techniques can be developed on a FPGA,
which is not possible in dedicated DSP designs.
Implementing image processing algorithms on
reconfigurable hardware minimizes the time-to-market
cost, enables rapid prototyping of complex algorithms and
simplifies debugging and verification. Therfore, FPGAs
are an ideal choice for implementation of real time 1mage
processing algorithms.

FPGAs have ftraditionally been configured by
hardware engineers using a Hardware Design Language
(HDL). The two principal languages being used are
Verilog and VHDL. Verilog and VHDL are specialized
design techniques that are not immediately accessible to
software engineers, who have often been trained using
imperative programming languages. Consequently, over
the last few years there have been several attempts at
translating algorithmic oriented programming languages
directly into hardware descriptions. A new Clike hardware
description language called Handel-C introduced by

13

Celoxica”, allows the designer to focus more on the

J. Eng. Applied Sci., 1 (2) : 103-111, 2006

specification of an algorithm rather than adopting a
structural approach to coding. The objective of this
study 18 to implement image processing algorithms like
median filter, morphing, convolution and canny edge
detection on FPGA using Handel-C and compare agamst
the performance of software implementation on a general
purpose computer.

The last few years have seen an wmprecedented
effort by researchers mn the field of mmage processing
using reconfigurable devices. Richard G.S™ discusses the
1dea of parameterized program generation of convelution
filters m an FPGA. A 2-D filter 1s assembled from a set of
multipliers and adders, which are in turn generated
from a canomcal serial-parallel multiplier stage. Atmel
application notes!” discuss 3x3 convolver with run-time
reconfigurable vector multiplier in Atmel FPGA. Lorca,
Kessal and Demigny™ proposed a new organization of
filter at 2 and 1 D levels, which reduces the memory size
and the computation cost by a factor of two for both
software and hardware implementations. Fahad Alzahram
and Tom Chen™ present a high performance edge
detection VLSI architecture for real time image processing
applications, the architecture 1s fully pipelined. It is
capable of producing one edge-pixel every clock cycle
at a clock rate of 10 MHz, the architecture can process
30 frames per second. Gemignani ef @l " presents the real
time 1mplementation of two mathematical operators which
are commonly used to detect edges: (i) gradient of
Gaussiar, (11) ‘b” operator. The algorithms are implemented
on digital signal processor.

This study presents a simple modeling of four image
processing algorithm listed above on reconfigurable
architecture using Handle-C. The algoritlin was
developed using the DK2 development environment and
was implemented using the Xilinx Vertex FPGA based PCI
board. The reason for selecting the Handle-C language
pardigram is its C based syntax and the DK2IDE’s
co-design framework that allows seamless mtegration of
software and hardware image processing modules. The
front-end Graphical User Interface (GUT) was developed
using Visual C++ environment.

IMAGE PROCESSING ALGORITHMS

This section discusses the theory of most commonly
used image processing algorithms like, 1) Filtering, 2)
Morphological Operations, 3) Convolution and 4)
Edge detection.

Median filter: A median filter 1s a non-linear digital filter
which 1s able to preserve sharp signal changes and 1s very
effective in removing impulse noise (or salt and pepper
noise)'. An impulse noise has a gray level with higher
low that 1s different from the neighborhood point. Linear

Center pixel replaced with
3x3 window median value
10] 5|20
14| 3|11 11
15]25| 2

[2T3]s]10] 11]14]15]20]25]

Median
Fig. 1: Median filter
(A) Structuring
element fits
//
r

Objects

\

(b) Struturing
element does
not fit

Fig. 2: Concept of structuring element fitting and not
fitting

filters have no ability to remove this type of noise without
affecting the distinguishing characteristics of the signal
Median filters have remarkable advantages over linear
filters for tlus particular type of noise. Therefore median
filter 1s very widely used in digital signal and image/video
processing applications.

A standard median operation 1s mmplemented by
sliding a window of odd size (e.g., 3x3 window) over an
image. At each window position the sampled values of
signal or image are sorted and the median value of the
samples 1s taken as the output that replaces the sample in
the center of the window as shown in Fig. 1.

The mam problem of the median filter is its lngh
computational cost (for sorting N pixels, the time
complexity is O(N log N), even with the most efficient
sorting algorithms). When the median filter 15 carried
out i real time, the software implementation in
general-purpose processors does not usually give good
results. The execution times are reduced by mmplementing
median filters on FPGAs.

104

J. Eng. Applied Sci., 1 (2) : 103-111, 2006

Input window Output pizel
w1 [walws F1 [P2[P3
W4 [Wslwe P4 [Po|ps| —>» [P
w1 iwswe| [pe[p7[8
Twe,
where P= g

3x3 Gaussian smooth filter 5x5 Gaussian smooth filter =14
21 131 (21 2 4 5 4 2
L3148 |31 4 o129 [a
256 1
21131 | 2 s 5 |12 (15 |12 | 5
4 |9 |12]9 |4
2 (4[5 [4 |2

Fig. 3: (a) Convolution Operation and (b) Gaussian Function for smoothing

Morphological operation: The term morphological image
processing refers to a class of algorithms that is interested
i the geometric structure of an mmage. Morphology can
be used on bmary and gray scale images and 1s useful m
many areas of image processing, such as skeletorization,
edge detection, restoration and texture analysis.

A morphological operator uses a structuring element
to process an image as shown in Fig. 2. The structuring
element is a window scanning over an image, which is
similar to the pixel window used in the median filter. The
structuring element can be of any size, but 3x3 and 55
sizes are common. When the structuring element scans
over an element in the mnage, there may be instances
where the structuring element completely fits inside the
object (Fig. 2a) or does not fit mside the object (Fig. 2b).

The building blocks many
morphological operators are erosion and dilation™.
Erosion as the name suggests 1s shrinking or eroding an
object in an image. Dilation on the other hand grows the
image object. Both of these objects depend on the
structuring element and how it fits within the object.

most basic for

Convolution operation: Convolution is simple

mathematical operation which is fundamental to many

a

common image processing operators. Convolution 13 a
way of multiplying together two arrays of numbers of
different sizes to produce a third array of numbers. In
image processing the convolution 1s used to umplement
operators whose output pixel values are simple linear
combination of certain mput pixels values of the mage.
Convolution belongs to a class of algorithms called
spatial filters. Spatial filters use a wide variety of masks
(kernels), to calculate different results, depending on the
desired function

2D-Convolution, is most important to modern image
processing. The basic idea is that a window of some finite
size 13 scammed over an image. The output pixel value is
the weighted sum of the input pixels within the window
where the weights are the values of the filter assigned to
every pixel of the window. The window with its weights is

105

called the comvolution mask. Mathematically, convolution
on image can be represented by the following equation:

Height of image wadth of image

IS

1=0 1=0

y(m,n)= hi, jyx(m—i,n - j),

where x 13 the mput image, h 15 the filter and y 1s the image

Animportant aspect of convolution algorithm 1s that
1t supports a virtually infinite variety of masks, each with
its own feature. This flexibility allows many powertul
applications. For example, the derivative operators which
are mostly used in edge detection use 3x3 window masks.
They operate only one pixel and its directly adjacent
neighbors in one clock cycle. Fig. 3a shows a 3x3
convolution mask operated on an image. The center pixel
is replaced with the output of the algorithm. Similarly
larger size convolution masks can be operated on
an image.

In 2-D, a circularly symmetric Gaussian has the form

—E v

25°

1
2na

G(x,y)=

z

where 0 15 the standard deviation of the distribution.

The 1dea of Gaussian convolution s to use this 2-D
distribution as a poimnt spread function and this is
achieved by convolution. Since the image 1s stored as a
collection of discrete pixels. A discrete approximmation to
the Gaussian function is required to perform the
convolution. In theory, the Gaussian distribution is
non-zero everywhere, which would require an infinitely
large convolution kernel, but in practice it is effectively
zero more than about three standard deviations from the
mean and so convolution kernel is truncated as shown in
Fig. 3b.

Edge detection: The edge detection algorithm explamed in
this section 1s similar to canny edge detection. First the

J. Eng. Applied Sci., 1 (2) : 103-111, 2006

90°

135°
Idy>{dx

dx<d
dy>0

|dtyP>ldx]
&0
dy<0

Idx{>{dy|

deed dy0
T a0
|dx/>{dy]|

180°

225°

270°

Fig. 4: Orientation

o O
o O oo [+|en |
O O

Prvn By, Prg, e

Fig. 5: Direction of the gradient

image 1s smoothed by Gaussian Convolution. A simple
2-D first derivative operator 1s applied to the smoothed
image to highlight regions of the image with high first
spatial derivatives. Edges translate into ridges in the
gradient magmtude image. The algorithm then tracks
along the top of these ridges and sets to zero all pixels
that are not actually on the ridge top so as to give a thin
line in the output, a process known as non-maximal
suppression. The tracking process exlubits hysterisis
controlled by two thresholds: T1 and T2, with T1>T2.
Tracking can only begin at a point on a ridge higher than
T1. Tracking then continues in both directions from that
point until the height of the ridge falls below T2. This
hysterisis helps to remove the edge fragments.

In the first stage the 5x5 Gaussian convolution mask
of standard deviation (6 = 1.4) used for smoothing. The
horizontal and vertical gradients are calculated using the
differences between adjacent pixels, one way to find

106

edges is to explicitly use a {-1 , +1 } operator. The Prewitt
masks are based on the idea of the central difference:

ﬂfl(XJFl:Y)*(X*LY)

R and
ox 2
A 1xy+D-lxy-1)
dy 2

corresponds to the following convolution lkernel:

These convolutions are applied to the results
obtained from the smoothing stage to get the horizontal
(dx) and vertical (dy) gradients.

In non maximum suppression stage an edge point is
defined to be a pomt whose strength 15 a local maximum
in the direction of the gradient. This is a difficult
constraint to satisfy and 1s used to thin the nidges found
by thresholding. This step works with the magnitude and
orientation of the gradient at the pixel under consideration
and creates one pixel-width edges. The values of
each component of the gradient determined from the
previous stage are employed to determine the magnitude
and direction.

Classically, to calculate the direction of the gradient
the arctangent 15 employed. The arctangent i1s a very
complex operation, which increases the logic depth and
delay. The value and sign of the components of the
gradient are used to analyze the direction. Consider the
pixel , x y p and the derivative at the pixel are dx and dy,
the gradient at p is approximated as shown in Fig. 4.

Once the direction of the gradient 1s known, the
values of neighborhood pixels at the point under analysis
are interpolated. The pixel that has no local maximum
gradient magnitude is eliminated. Comparison is made
among the actual pixel and its neighbors along the
direction of the gradient.

For example, if the direction of the gradient to be
between 90 and 135°, then compare the magnitude of the
gradient at P_ _ with the magnitude of the gradient at the
points adjacent to P, , in the direction of the gradient as
shown mn Fig. 5.

The value of the gradient at the points p, and p, are
defined as follow:

P

x-1,7-1 + Px,y—l

P

Pb: x,7+1 + Px+l,y+l

Pa

The center pixel P, is considered to be an edge, if
P, ~P. and p, ~p,. If both conditions are not satisfied the
center pixel 15 eliminated. The output inage of this stage
consists of some individual pixels and is usually
thresholded to decide which edges are significant. Two
thresholds Ty, (High Threshold) and T, (Low Threshold)

J. Eng. Applied Sci., 1 (2) : 103-111, 2006

are applied, where T;>T,. If the gradient magnitude is
greater than T, that pixel 13 considered as a defimite edge.
If the gradient magnitude is less than T, than that pixel is
unconditionally set to zero. If the gradient magmtude 15
between these two, then it 1s set to zero unless there is a
path from this pixel to a pixel with a gradient above T; the
path must be entirely through pixels with gradients of at
least T;. A 3%3 moving window operator is used to
evaluate this threshold. The center pixel is said to be
comected if at least one neighboring pixel value 1s greater
than T, and the resultant is an image with sharp edges.

IMPLEMENTATION RESOURCES

FPGAs have traditionally been configured by
hardware engineers using a Hardware Design Language
(HDL). Consequently, over the last few years there have
been several attempts at translating algorithmic oriented
programming languages directly into Thardware
descriptions. A new C like hardware description language
called Handel-C introduced by Celoxica, allows the
designer to focus more on the specification of an
algorithm rather than adopting a structural approach to
coding. For these reasons the Handel-C 1s used for
implementation of image processing algorithms on FPGA.

Handle-C: Handel-C is essentially an extended subset of
the standard ANSI-C language, specifically designed for
use in a hardware environment. Unlike other C to FPGA
tools which rely on going via several mtermediate stages,
Handel-C allows hardware to be directly targeted from
software, allowing a more efficient implementation to be
created. The language is designed around a simple timing
model that malkes it very accessible to system architects
and software engineers.

The Handel-C compiler comes packaged with the
Celoxica DK1 development environment. DK1 does not
provide synthesis and the suite must be used in
conjunction with one of any number of synthesis tools
available to complete the design flow from idea to
hardware.

Targets supported by handel-C: Handel-C supports two
targets. The first 15 a simulator target that allows
development and testing of code without the need to use
any hardware. This 1s supported by a debugger and other
tools. The second target is the synthesis of a netlist for
mput to place and route tools. Place and route 1s the
process of translating a netlist into a hardware layout.
This allows the design to be translated into configuration
data for particular chips. When compiling the design for
a hardware target, Handel-C emits the design in Electromic
Design Interchange Format (EDIF) format. A cycle count

107

is available from the simulator and an estimate of gate
count 1s generated by the Handel-C compiler. To get
definitive timing information and actual hardware usage,
the place and route tools need to be mvoked.

HARDWARE IMPLEMENTATION

The algorithms implemented in this work use the
moving window operator. The moving window operator
usually process one pixel of the image at a time, changing
its value by some function of a local region of pixels
{covered by the window). The operator moves over the
image to process all the pixels in the image. A 3x3 moving
window 15 used for the median filtering, morphological
and edge detection algorithms and a 5%5 moving window
used n Gaussian smoothing operation.

For the pipelined implementation of image processing
algorithms all the pixels in the moving window operator
must be accessed at the same time for every clock. A
2D-matrix of First In First Out (FIFO) buffers are used to
create the effect of moving an entire window of pixels
through the memory for every clock cycle (Fig. 6). A FIFO
consists of a block of memory and a controller that
manages the traffic of data to and from the FIFO. The
FIFO’s are implemented using circular buffers constructed
from multi-port block RAM with an index keeping track of
the front item in the buffer. The availability of multi-port
block RAM m the Xilinx Vertex-E FPGA helps inachieving
the read and write operations of the RAM in the same
clock cycle. This allows a throughput of one pixel per
clock cycle. The same effect can be achieved using
double-width RAMSs implemented m lockup tables on the
FPGA. However, the use of block RAMSs is more efficient
and has lessassociated logic for reading and writing.

For a 3%3 moving window two FIFO buffers are used.
The size of the FIFO buffer 15 given as W-M, where W 1s
the width of the image and M the size of the window
(M>M). To access all the values of the window for every
clock cycle the two FIFO buffers must be full. Figure 6
shows the architecture of the 3x3 moving window. For
every clock cycle, a pixel is read from the RAM and placed
into the bottom left corner location of the window.

>| Frro1 |:> wil |wiz2 | wig |7 disposed
—N[o2 w21 |w22 | waa
L4
w3l | w3z [wss
[ram =

—

Fig. 6: Architecture of 3x3 moving window

J. Eng. Applied Sci., 1 (2) : 103-111, 2006

Median filter: A median filter is implemented by sliding a
window of odd size on a image. A 3x3 window size 1s
chosen for implementation for median filter, because it is
small enough to fit onto the target FPGA’s and is
considered large enough to be effective for most
commonly used image sizes. The median filter uses the
3x3 window operation discussed in Section 2.1. The
median filtering operation sorts the pixel values m a
window in ascending order and picks up the middle value,
the center pixel in the window 1s replaced by the middle
value. The most efficient method of accomplishing sorting
15 with a system of hardware compare/sort umts, which
allows sorting a window of pixels into an ascending order.

Morphological operations: The basic morphological
operators are erosion and dilaton. The erosion and
dilation of a grayscale image are called grayscale erosion
or dilation. These grayscale erosion 1s performed by
minimum filter, whereas the dilation is performed by
maximum filter. In a 3x3 mimmum filter, the center pixel 15
replaced by a minimum value of the pixels in the window
In a maximum filter, the center pixel 1s replaced by a
maximum value of the pixels in the window. The
mmplementation of mimmum and mexmmum filters s
similar to the median filters implementation.

Convolution operation: Convolution is a very complex
operation that requires huge computational power. To
calculate a pixel for a given mask of size m xn, m * n
multiplications , m *n-1 additions and one division are
required. Therfore, to perform a 3x3 multiplication on a
256%256 gray scale image, 589824 multiplications , 393216
additions and one division are required.

Multiplication and division operators produce the
deepest logic. A smgle cycle divide, or multiplication
produces a large amount of hardware and long delays
through deep logic. In order to improve the performance
of the convolution operation, it 1s necessary to reduce the
multiplication and division operators. Multiplication and
division can be done using bit shifting, but this is only
possible with the powers of 2’s. Multiplier-less
multiplication can be employed to do multiplication of non
power of 2’s digits, where multiplication 1s done with only
shifts and additions from the binary representation of the
multiplicand.

Edge detection: Hardware implementation of edge
detection algorithm is discussed in this section. Edge
detector operation implemented in this study consists of
four stages:

+ TImage smoothing;

Vertical and Horizontal Gradient Calculation;

108

Directional non-maximum
input Horizontal (dx) Magnitode
—>»| smoothing [and vertical (dy) and
gradient phase
Non mmum;l
outpul 4—| Threshold [« suppression
Fig. 7. Design Flow of Edge detection
.
// 8
8
Two-18-bit o : TWO
FIFO anay<: Directional %L gradient(dx) "1 g bit FIFO
non-max array
Fold suppression Vertical
and T2 s gradient{dy) g
Two TBi 1 %
FIFO .
Artay 1 hYSterSIS /
ety
1 Tite to

Fig. 8 Pipelined Edge Detection

Directional Non Maximum Suppression;

Threshold.

Normally, the edge detection algorithm is
implemented by applying the Gaussian smoothing on the
entire image. Furthermore, the smoothened image 1s used
as an wput to calculate the gradient at every pixel and
these gradient values are used to calculate the phase and

the magnitude at the pixel, which is followed by
non-maximum suppression and output, is thus
thresholded.

Using the above mentioned design, each stage is
accomplished separately one after another. It can be
perceived as a trade off between an efficient output and
resources involved because, while implementing such
design on the hardware, a lot of resources and clock
cycles are consumed. As shown in Fig. 7 the magnitude
and phase calculation stage and non-maximum
suppression stage are combined to directional non-
maximum stage. A pipelined architecture shown m Fig. 8
1s designed.

J. Eng. Applied Sci., 1 (2) : 103-111, 2006

Tmage smoothing: Smoothing of the image is achieved by
5%5 Gaussian convolutions. A 5x5 moving window
operator 1s used, four FIFO buffers are employed to
access all the pixels in the 5x5 window at the same time.
Since the design is pipelined, the Gaussian smoothing
starts once the 2 FIFO buffers are full. That 1s, the output
1s produced after a latency of twice width of mmage plus
three cycles. The output of this stage is given as input
to the next stage.

Vertical and horizontal gradient calculation: This stage
calculates the vertical and horizontal gradients using 33
convolution kernels shown in Section 2.4. An 8-bit pixel
m row order of the image produced during every clock
cycle in the image smoothing stage 1s used as the mput in
this stage. Since 3x3 convolution kernels are used to
calculate the gradients, neighboring eight pixels are
required to calculate the gradient of the center pixel and
the output pixel produced in previous stage is a pixel in
row order. In order to access eight neighboring pixels in
a single clock cycle, two FIFO buffers are employed to
store the output pixels of the previous stage.

The gradient negative
numbers. In Handel-C, negative numbers can be handled
easily by using signed data types. Signed data means that

calculation introduces

a negative mumnber 1s interpreted as the 2°s complement of
number. In the design, an extra bit 1s used for signed
mumbers as compared to unsigned 8 bit numbers (ie.,
9 bits are used to represent a gradient output instead
of 8). Two gradient values are calculated for each pixel,
one for vertical and other for horizontal. The 9 bits of
vertical gradient and the 9 bits of the horizontal gradient
are concatenated to produce 18 bits. Since the whole
design 1s pipelined, an 18 bit number 1s generated during
every clock cycle, which forms the mput to the next stage.

Directional non maximum suppression: The output of
the previous stage 1s used as mput in this stage. In order
to access all the pixels in the 33 window at the same time
two eighteen bit FIFO buffers of width of the image minus

Table 1: Timing result edge detection algorithm on 256=256 gray scale image

three array size are employed Once the direction of the
gradient 1s known, the values of the pixels found in the
neighborhood of the pixel under analysis are mterpolated.
The pixel that has no local maximum gradient magnitude
i eliminated. The comparison is made between the actual
pixel and its neighbors, along the direction of the gradient.

Threshold: The output obtained from the non maximum
suppression stage contains single edge pixels which
contribute to mnoise. This can be elminated by
thresholding. Two thresholds (high threshold (Ty) and
low threshold (T.) are employed. If the gradient of the
edge pixel 15 above Ty, it is considered as a strong edge
pixel. If the gradient of the edge pixel is below T, it 1s
unconditionally set to zero. If the gradient i1s between
these two threshold, then it is considered as a weak edge
pixel. Tt is set to zero unless there is a path from this
pixel to a pixel with a gradient above Ty; the path must
be entirely through pixels with gradients with at least
T, threshold.

To get the connected path between the weak edge
pixel and the strong edge pixel, a 3x3 window operator 1s
used. If the center pixel 13 a strong edge pixel and any of
the neighbors is a weak edge pixel, then weak edge pixel
is considered as a strong edge pixel. The resultant image
1s an image with optimal edges.

RESULTS

The mnage processing algorithms discussed above
were modeled m Handel-C using the DK2 environment.
The design was implemented on RC1000-PP Xilinx
Vertex-E FPGA based hardware. The timing result of the
mmage processing algorithms on a 256x256 size gray scale
Lena image 1s shown in Table 1.

The hardware implementation of the algorithms is
compared with implementation on a PentiumIIl 1.3 GHz
machine using Visual C++ Version 6.0 without any
optimization. The speed of our FPGA solution for the
image processing algorithms is 20 times faster than the

¥ilinx vertex-E FPGA pentium ITT
Freq [MIz] Time [ms] Freq [MHz] Time [ms]
Median filter, 25.9 2.56 1300 51
morphological
operation
Ganssian convohition Direct division by 115 259 2.62 1300 31
Division using right shift(>> 7) 42 1.57 1300 31
Gaussian smoothing Direct multiplication 42.03 1.58 1300 16
LUT based multiplication 50.99 1.31 1300 16
Edge detection 16 4.2 1300 47

109

J. Eng. Applied 5ci., 1 (2) : 103-111, 2006

Table 5.2 Implementation Cost on FPGA

Design Lookup tables (LUTs) Flip-flops Block RAMs CLB slices Inputfoutput Blocks
Median, Erosion and Dilation 406 298 2(1%) 652 (3%%) 145 (35 %)
5x3 Convalution div by 115 1040 926 4(2%%) 994 (5%) 145 (35%6)
x5 Convolution div by shift { >=7) 597 302 4 (2%) 1035 (5%) 145 (35%)
3%3 Convolution direct multiplication T35 442 (1% 479 (2%) 145 (35%)
3%3 Convolution LUT based Multiplication 384 428 2(1%) 479 (2%%) 145 (35%)
Edge Detection 945 307 4 (%) 1320 (10%) 145 (35%)

Hsmwm FELEs

© (d)

Fig. 9: (a) Original Image, (b) Gaussian convolution, {(c) Salt and pepper noise, (d) Median filter, (e) Erosion, (f) Dilation,
{(g) Edge detection

110

J. Eng. Applied Sci., 1 (2) :

software implementation. Table 2 lists the implementation
cost on hardware and Fig. 9 shows the output of hardware
implemented images.

REFERENCES

1. John, C. Ross, 1994. Image Processing Hand book,
CRC Press.

2. Stephen, D., R.J. Brown, J. Francis and Z.G. Rose,
1992, Vranesic Filed Programmable Gate Arrays.

3. Moore, M., 1995 A DSP-based real time image
processing sytem”. In the Proceedings of the 6th
International conference on signal processing
applications and teclmology, Boston MA, August.

4. Rolf, F.P. Molz, M. Engel, G. Fernando L..T. Moraes
and R. Michel, 2000. Design of a Classification
System for Rectangular Shapes Using a Co-Design
Environment”. Tn the 13th Symposium on Integrated
Circuits and Systems Design , pp: 281-286.

5. Richard, G. Shoup, 1993. Parameterized Convolution
Filtering n a Field Programmable Gate Array Interval.
Techmcal Report, Palo Alto, Califorma.

6. Convolver with Run-Time Reconfigurable Vector
Multiplier in Atmel AT6000 FPGAs. AT6000 FPGAs
Application Note 1997.

7. Gemignani, V., M. Demi, M. Patermi , M. Giannom and
A. Benassi, 2001. DSP implementation of real time
edge detectors”. In the Proceedings of speech and
image processing, pp: 1721-1725.

111

8.

10.

11
12.

13.

14.

15.

103-111, 2006

Canny, J., 1986. A computational approach to the
edge detection. IEEE Trans Pattern and Machine
Intelligent. Vol PAMI-8 pp: 679-698.

Lorca, F.G., L. Kessal and D. Demigny, 1997. Efficent
ASIC and FPGA implementation of IIR filters for Real
time edge detection. In the International Conference
on image processing (ICIP-97) Volume 2.

Fahad Alzahrani, 1997. Tom Chen Real-time high
performance Edge detector for computer vision
applications. In the Proceedings of ASP-DAC,
pp: 671-672.

Celoxica Ltd. www.celoxica.com.

Peter, M.C., Curry, M. Fearghal and K. Liam, 2000.
Kilinx FPGA mmplementation of a pixel processor for
object detection applications. Proc Trish Signals and
Systems Conference.

Kihinx VertexTM-E Field Prgrammable Gate Arrays
(V2.4) Tuly 17, 2002 Production Product specification.
Venkateshwar Rao Daggu, 2003. Design and
Implementation of an Efficient Reconfigurable
Architecture for Image Processing Algorithms using
Handel-C. Masters Thesis, UNLV.

Man, Ng, 2002. High level design for high speed fpga
devices.master’s Thesis Dept of computing. limperial
College.

