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Abstract: In this study we are concerned with homogeneous dusty fluid turbulence in a rotating system and

have considered correlations between fluctuating quantities, at four points. In this case, three and four point

correlation equations are used and the set of equations 13 made determinate by neglecting the qumntuple

correlations in comparison to the third and fourth order correlation terms. For convenience, the correlation

equations are converted to spectral form by taking their Fourier transforms. Finally, integrating the energy

spectrum over all wave numbers, the energy decay law of homogeneous dusty fluid turbulence in a rotating

system before the final period is obtained.
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INTRODUCTION

In recent year, the motion of dusty viscous fluids in
a rotating system has developed rapidly. The motion of
dusty flnd occurs in the movement of dust-laden air, in
problems of flmdization, m the use of dust in a gas
cooling system and m the sedimentation problem of tidal
rivers. When the motion 1is referred to axes, which rotate
steadily with the bulk of the fluid, the coriolis force and
centrifugal force must be supposed to act on the fluid.
The coriolis force due to rotation plays an important role
ina rotating system of turbulent flow while the centrifugal
force with the potential is incorporated into the pressure.
Deissler™” generalized a theory “Decay of homogenecus
turbulence for times before the final period”. Saffman'”
derived an equation that described the motion of a fluid
containing small dust particles. Dixit and Upadhyay™,
Kishore and Dixit™, Kishere and Singh!” discussed the
effect of Coriolis force on acceleration covariance in
ordmary and MHD turbulent flows. Shimomuwra and
Yoshizawal, Shimomura®? also discussed the statistical
analysis of turbulent viscosity, turbulent scalar flux and
turbulent shear flows respectively in a rotating system by
two-scale Direct-interaction approach. Kishore and
Upadhyay''"” studied the decay of MHD turbulence in a
rotating system. Sarker and Islam" also studied the
decay of dusty fluid turbulence before the final period in
a rotating system using two and three point correlation
equations. By analyzing the above theories we have
studied the decay of dusty fluid turbulence before the
final period m a rotating system using three and four pomnt
correlation equations.
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CORRELATION AND SPECTRAL EQUATIONS

The equations of motion of dusty fluid turbulence in
a rotating system at the points p, ¢, p” and p” are
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where the repeated subscript in a term indicates a
summation. Here #, turbulent velocity components; v,
dust particle velocity components, p, fluid density; v,
kinematic wviscosity, Q.. constant angular velocity
components; €., alternating tensor, p, instantaneous

pressure; m, = .mass of a single spherical dust

4 3
gﬂRsps
particle of radius R,; p,, constant density of the material in
dust particles; . KN, dimensions of frequency; K,
P

Stock’s drug resistance; N, constant number density of
dust particle.

Multiplying Eq. 1 by dulu!, Eq. 2 by uulu!, Eq. 3 by

f

uud, and Eq. 4 by uuul then adding and taking
ensemble average writing in terms of the independent
variables 1, I’ and # as
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Substituting the preceding relations mto Eq. 5, we get
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To obtain a relation between the terms on the right
side of Eq. 13 derived from the quadruple correlation
) ) terms, pressure terms, rotational terms and the dust
where the following transformations were used: particle terms in Eq. 5, take the divergence of the equation

of motion and combme with the continuty equation
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In order to convert Eq. 5 to spectral form, we define

the following mne-dimensional Fourier transforms: o

Multiplying Eq. 14 by uuwu, taking ensemble
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Equation 13 and 16 are the spectral equations
corresponding to the four pomt correlation equations.
The spectral equations corresponding to the three point
correlation equations are
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Here the spectral tensors are defined by
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A relation between [, and vy, can be obtained by
letting ' = 0 in Eq. 6 and comparing the result with Eq. 20

B (k)= [ 7yl K KK (22)

The spectral equation corresponding to the two
point correlation equation in presence of dusty fluid in a
rotating system is

d
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The relation between ¢, and ¢, obtained by letting
¢ =0in Eq. 6 and comparing the result with Eq. 25 is
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byy(k) = nfﬁuk(lf, k')dk' (26)

SOLUTION NEGLECTING
QUINTUPLE CORRELATIONS

Equation 16 shows that if the terms corresponding to
the quintuple correlations are neglected, then the pressure
force terms also must be neglected. Thus neglecting first
and second terms on the right side of Eq. 13, the equation
can be integrated between ¢, and  to give
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is an arbitrary constant and (y;), is the value of
{Yym) at t = t,. The quantity (y,,), can be considered also
as the value of (y,,), at small values of k, k" and k', at least
for times when the quintuple correlations are negligible.

Equation 22 and 27 can be converted to scalar form
by contracting the indices i and j, as well as k and 1
Substitution of FEg. 18, 22 and 27 into the three point
scalar Eq. 17 results in
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where o2t tl)]%

In order to simplify the calculations, we shall assume
that [a], = 0; that 13, we assume that a function sufficiently
general to represent the mitial conditions can be obtained
by considering only the terms mvolving [b], and [¢],

The substitution of Eq. 26 and 30 in Eq. 23 and
setting E = 2nk’(p,; results in
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The quentity E 1s the energy spectrum function,
which represents contributions from various wave
numbers or eddy sizes to the total energy. ¥ 1s the energy
transfer function, which is responsible for the transfer of
energy between wave numbers.

Tn order to find the solution completely and following
Deissler™™, we assume that
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where the bracketed quantities are set equal in order
to make the integrands mn Eq. 32 antisymmetric with
respect to k and K’

By substituting Eq. 33 and 34 in Eq. 32 remembering
that dk’ = -wk"d(cos0)dk’ and kk' = kk' cosB, (0 is the
angle between vectors k and k) and carrying out the
integration with respect to 0,we get
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The integrand in this equation represents the
contribution to the energy transfer at a wave number £,
from a wave number %, The integral is the total
contribution to ¥ at &, from all wave numbers. Carrying
out the indicated integration with respect to k' in Eq. 35,
results in
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The quantity W, is the contribution to the energy
transfer arising from consideration of the three-point
correlation equation, W, arises from consideration of
the four-pomt equation. Integration of Eq. 36 over all
wave numbers shows " [Wdk = 0 that indicating the
expression for ¥ satisfies the conditions of continuity
and homogeneity

In order to obtain the energy spectrum function
E, we integrate Hg. 31 with respect to time. This
integration results in
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The quantity B, is the energy spectrum function for
the final period, where E; and E, are the contributions to
the energy spectrum arising from consideration of the
three and four point correlation equations, respectively.

Equation 39 can be integrated over all wave numbers
to give the total turbulent energy

(43)

The result carrying out the integration is, in
dimensionless form
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and A, B, C are arbitrary constants.
CONCLUDING REMARKS

In Equation 44 we obtain the decay law of dusty flud
turbulence in a rotating system before the final period
considering three and four point correlation equations
after neglecting quintuple correlation terms. The Eq. 44
shows that turbulent energy decays more rapidly in
an exponential manner than the energy decay for
non-rotating clean fluid This decay law contains a term,

e i
T’ as well as the terms T’ and T  along with
exponential terms that also contains rotational terms in
presence of dust particles. Thus the terms associated with
the higher order correlations die out faster than those
order The factor

assoclated with the lower ones.

occurring in the last term in Eq. 44 will cause that term to
decay even faster, so long as t,-t,>0.
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If the system is non-rotating, we put ’s = 0, the
Eq. 45 becomes
5
<u2 ) — AT 2 exp{Qf(t—t,)}+ BT exp{Rf
(46)

t—t, ) 2

(t—t, )+ C[ﬁ] ’ T_% exp{Sf(t—t,)}

0

Again if the fluid is clean, we put f = 6, then Eq. 46
becomes

19
3 o 19
= t*t 2 -
<u2>=AT2+BT’7+C{—1J T :

0

which is obtained earlier by Deissler'™.

If the lugher order correlations were considered in
the analysis, it appears that more terms in higher power of
T would be added to Eq. 45.
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