On Diophantine Equation of Degree Two

Nil Ratan Bhattacharjee, Talky Bhattacharjee and Milan Kanti Dhar Department of Mathematics, University of Chittagong, Chittagong, Bangladesh

Abstract: Attempt have been made to show that the equation $x^2 - py^2 = -1$ is always solvable for integers if P is a prime of the form 4n+1.

Key words: Diophantine equation, Quadratic equation, quadratic residue

INTRODUCTION

The study of pell's equation x^2 - dy^2 =N using the properties of periodic continued Fractions is an ancient one^[1].

An Investigation for numerical solution of the equation $x^2 - py^2 = -1$ has been carried out by BACH, B.D. and Williams H.C.^[2]. In their work they presented a table of values of P $(1 \le P \le 10^6)$ for integers x, y with y $\ne 0$.

Here we have used a different and generalized method to show that the equation $x^2 - py^2 = -1$ is always solvable in integers if P is a prime of the form 4n + 1. By a representable number we shall mean a number, which is representable as a sum of two squares.

Theorem: The equation $x^2 - py^2 = -1$ is always solvable in integer if P is a prime of the form 4n+1.

To prove this theorem we shall use minimality condition and the identity [3].

$$(A^2+B^2)(C^2+D^2) = (AC-BD)^2 + (AD+BC)^2 OR (AC+BB)^2 + (AD-BC)^2.$$

Since P is a prime of the form 4n+1 and -1 is a quadratic residue of $P^{[3,4]}$, there is a positive integer u such that

$$u^2 + 1 \equiv 0 \pmod{P} \tag{1}$$

Therefore, for some natural number m

$$u^2 + 1 = m P \tag{2}$$

Let R be the set of all positive integers for which mP can be represented as a sum of two squares. Then R is not empty. Suppose m_0 be the smallest of them. If m_0 =1, there is nothing to prove.

If $m_0 > 1$, then for certain integers x_0 , y_0 we have

$$m_0 P = x_0^2 + y_0^2 (3)$$

Obviously $m_{\scriptscriptstyle 0}$ cannot divide both $x_{\scriptscriptstyle 0}$ and $y_{\scriptscriptstyle 0}$. Hence we can write

$$x_0 = x_1 \pmod{m_0}, y_0 = y_1 \pmod{m_0}$$
 (4)

Now from (3) and (4)

$$x_0^2 + y_0^2 \equiv x_1^2 + y_1^2 \equiv 0 \pmod{m_0}$$

Therefore, there are some m₁ such that

$$x_1^2 + y_1^2 = m_1 m_0 (5)$$

where $0 \le m_1 \le m_0$

Using the identity we get from (3) and (4)

$$mm_1P = (x_0x_1 + y_0y_1)^2 + (x_0y_1 - x_1y_0)^2$$
 (6)

Now

$$x_0x_1 + y_0y_1 \equiv x_1^2 + y_1^2 \equiv 0 \pmod{m_0}$$

 $x_{0v1} - x_1y_0 \equiv x_1y_1 - x_1y_1 \equiv 0 \pmod{m_0}$

Therefore,

$$\mathbf{m}_1 \mathbf{P} = \mathbf{a}^2 + \mathbf{b}^2 \tag{7}$$

Where

$$a = (x_0x_1 + y_0y_1)/m_0$$

$$b = (x_0y_1 - x_1y_0)/m_0$$

But this contradicts the minimality of m_0 unless $m_0 = m_1$ or $m_0 = 1$.

Hence in both the cases we get an integral number m₁ such that

$$u^2 + 1 = m_1^2 P$$

i.e.
$$u^2 - m_1^2 P = -1$$

Now to complete the theorem we shall show that in $mP = u^2 + 1$, m must be a squred number.

If P is not a number of the form $u^2 + 1$, then we must have m>1 such that

$$mP = u^2 + 1$$

And then for some $m_1 < m_0$ equation (6) yields.

$$\begin{array}{ll} m \ m_{_1}P & = (x_0x_{_1} + y_0y_{_1})^2 + (x_0y - x_0y_{_1})^2 \\ & = a_{_1}{^2} + b_{_1}{^2} \end{array}$$

if $m_1 = 1$, there is nothing to prove.

But if $m_1>1$ then, since every prime factors of a representable number is also representable proceeding as above we must have a number $m_2 < m_1$ such that

$$m_1^2 m_2 P = a_2^2 + b_2^2 (say)$$

if $m_2 \neq 1$ we must have $m_3 < m_2$ and so on.

Continuing the process we shall get m₁=1 since P is representable.

Thus it is always possible to have a number

$$m = k^2 = m_1^2$$
 such that
 $k^2P = x_0^2 + y_0^2$, for some (x_0, y_0)

Hence the theorem.

REFERENCES

- Mordell, L.J., 1969. Diophantine Equations, Academic press, New York.
- BACH, B.D. and H.C. WILLIAMS, 1972. A numerical investigation of the Diophantine equation x2-dy2=-1, Florida Atlantic Univ. Boca Raton, Fia, 37.
- 3. Telang, S.G., 1996. Number Throry, Tata McGraw-Hill Publishing Co. Ltd., New Delhi.
- 4. Ivan Niven, H.S. Zuckerman and H.L. Montgomery, 2004. John Wiley and Sons, Inc.