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Modal Analysis of a Cavity by T.L.M. and Study of T.M. Modes

Z. Nadir, M. Bait Suwailem
Electrical and Computer Engineering Department, Sultan Qaboos University
P.OBox 33, Muscat, Sultanate of Oman, P.C. 123, Oman

Abstract: The objective of the work presented in this paper consists of evaluating, by a numerical method, the
distribution of electromagnetic energy in the centre of a cavity. More precisely it 1s the observation of the
electromagnetic field around a device under test. The numerical techmque which we opted 1s Transmission Line
Matrix (TLM) which is based on time domain. The possible targeted applications are, on one side, the analysis
of a measurement techniques e.g., Mode Stirrer Reverberating Chamber (MSRC) and on the other side the

analysis of electromagnetic environment of a system.
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INTRODUCTION

Transmission Line Modelling (TLM) or Transmission
Line Matrix (TLM) Modelling is a general numerical
simulation technique suitable for solving field problems.
Its mam application has been m electromagnetics, but it
has also been applied to thermal or diffusion problems as
well as acoustics.

The TLM method belongs to the general class of
differential time-domain numerical modelling methods. The
principles of the TLM time domain method have been
introduced by Johns & Beurle!. Voltages and currents in
this network are equivalent to electric and magnetic fields
mn electromagnetic systems. The main advantage of this
method 1s the sumplicity of formulation and programming
for a large range of applications. The basic approach of
the TLM method 1s to obtain a discrete model which 15
then solved exactly by numerical means; approximations
are only introduced at the discretisation stage. This 1s to
be contrasted with the traditional approach in which an
idealized contimious model is first obtained and then this
model 18 solved approximately.

In this paper, the distribution of electromagnetic
energy in the centre of a cavity is studied. More precisely
it is the observation of the electromagnetic field around a
device under test to be placed afterwards. The T.M.
modes determined by TLM are then compared with the
analytical results for a cavity. At the end we study the
deformation of the distribution of modes by the change in
the geometry. Mode Sturer Reverberating Chamber
(MSRC) and on the other side the analysis of
electromagnetic environment of a system are the possible
applications.

THE TWO DIMENSIONAL TLM METHOD

Propagation and scattering of pulses 1 a network
consists of interconnected ideal transmission lines. In two
dimensional scheme, at each time step, every node
receives incident voltage pulses, and sends scattered
pulses, as shown m Fig. 1.

The scattered pulses at time (t) become incident
pulses on adjacent nodes at (t + At). The scattering matrix
is computed from transmission lines theory™. For
electromagnetic systems, the discrete model 1s formed by
conceptually filling space with a network of transmission-
lines in such a way that the voltage and current give
information on the electric and magnetic fields. The pomnt
at which the transmission-lines intersect 1s referred
to as a node and the most commonly used node for
3-dimensional work 1s the symmetrical condensed node.

At each time step, voltage pulses are incident upon
the node from each of the transmission-lines. These
pulses are then scattered to produce a new set of pulses
which become incident on adjacent nodes at the next time
step. The relationship between the meident pulses and
the scattered pulses 1s determined by the scattering
matrix, which i1s set to be consistent with Maxwell's
equations. Additional elements, such as transmission-line
stubs, can be added to the node so that different material
properties can be represented™ *!. In order to appreciate
the importance of dispersion, the process in Fig. 1 shows
the response of TLM network to a single impulse which
contains all frequencies. Thus harmonic solutions of a
problem can be obtained by Fourier transform. Accurate
solutions will be obtained only at frequencies for which
the dispersion effect can be neglected.
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Fig 1: Propagation of impulses in a two dimensional
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Fig 2: (a) Shunt Node and (b) equivalent lumped element
model in a 2-dimensional TLM network
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The shunt node and equivalent lumped element
model of two dimensicnal TLM network
in Fig. 219

L and C are the inductances and capacitances per
unit length for the transmission lines. The distance
between any two adjacent nodes is constant, and is equal
to Al

TLM mesh can be extended to three dimensions
giving complex network containing series and shunt
nodes. Each of the six field components is simulated by a
voltage or a current in that mesh.

is shown

WAVE PROPAGATION PROPERTIES

Ina free space medium € = go , iz = po and the wave
propagates with the velocity of light, ¢ :

57

= M
i
For the elementary transmission line and for
g, = i, = 1, the mductance and capacitance per umt length
are related by:
. @)

Jic

However as, 4= L and £ = 2C'", we can say that as if
voltage and current waves, on each transmission line
component, propagate at the speed of light ¢, the
complete network of intersecting transmission lines
represents a medium of relative permittivity twice that of
free space. Tt shows that on the network of the
transmission lines, the speed of propagation 15 slowed
down, slow wave propagation. This 13 a fundamental
property of TLM method in two dimensional case.

RESULTS AND DISCUSSION

Principle of calculation of modes: To validate the
calculation by the TLM method, we compare the given
distribution with the analytical calculation. The walls are
modelled as perfect conductor. The network of TLM 1s
excited (for TM modes) locally, at a point arbitrarily
selected, with Hz=0, Ex=Ey=0 where Ex and Ey are the
components of electric field and Hz 1s the component of
magnetic field. The system 1s excited with a Dirac umt
pulse at time t = 0. At any point in the cavity, the
electromagnetic wave can be obtained under the form of
succession of pulses with the following equation:

M
Y(t)= 3 y(n).8(t - nAt) (3)
n=1
where, At 1s the incremental time step.

Application of Fourier transform on equation (3) will
give the spectral response. However, it is evident that the
observation of signal will be effected over a finite
time period. On the other side, to distinguish very
close modes, this observation window should be
sufficient. We used the Hanning window to limit the
phenomena of Gibbs. We know that the dimensions of
discretisation should be smaller than the wavelength
of operation. Successive measurements show that
A/ 10 is sufficient to get a very good precision for the

resonant frequencies!.

Distribution of Transverse Magnetic modes: Figure 3
shows the geometrical structure for the purpose of the
study of the mfluence of the geometrical modification.
Fig. 4 shows some of the resulted TM modes obtained
from the numerical calculations performed using the TLM
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Fig 3. Geometrical structure for studying the influence
due to the object

method. As can be seen from the figure, the modes are

easily extracted using the Fourier transform. For
verification purposes, the numerical results are
compared with analytical ones calculated and

summarized i Table 1.

The obtained modes well agree with the analytical
calculations. Recalling few equations used for the
calculation are:

+1/2 +1/2 +1/2 +1/2

+1/2 -1/2 +1/2 +1/2
[s]= )

+1/2 +1/2 -1/2 +1/2

+1/2 +1/2 +1/2 -1/2
E, = Zo[V; + V, + Vi + V] (5)
H, =—Vitvi (6)
H =+V, -V, (7

and Vi =1/2[+H, +1/2%E,/Z,]

Vi =1/2[-H,+1/2*E,/Z, | ®

V=1/2[-H, +1/2%E,/Z,]
Y, =1/2[+H, +1/2*E,/7, |
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Table 1: Analytical and numerical results for ditferent modes

Type of Analytical MNumerical
Teun calculation results
8. No. modes (Ghz) TLM(GHz)
1 TM;, 0.212 0.212
2 TM;ap 0.335 0.336
3 TMa, 0.424 0.424
4 TM;, 0.474 0.472
5 TMa, 0.540 0.540
6 TMy 0.618 0.618
7 TMas 0.636 0.636
8 TM,, 0.670 0.670
9 TM.s 0.750 0.750
10 TMs, 0.764 0.764
11 TMs, 0.807 0.807
12 TMy, 0.848 0.842
13 TM;; 0.874 0.873
Other details:
NAL = 1m; AL=S5cm
Nét =120n8; N,=N~20
Max firequency = 1GHz; Excitation Node=13(3*3)
Output Node =318(18*16)
MNumber of iterations = 1018

E.(excit) = 1, Hy(excit)=0, Hfexcit)=0
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Fig. 4: Response of the electric field component
CONCLUSION

This study represents the TLM method and its
comparison for calculation of modes for a structure. Like
other methods, this one can be used to take into account
the lossy medium or non homogenised medium. We can
also look mto with variable discretisation of the mesh. The
method 15 based on the symmetrical condensed nodes
and permits to calculate the EM field m a cavity along
with the presence of metallic obstacles. After the
application of Fourier transform, the method can be used
to evaluate the resonant frequencies of the structure.

In future, we can look into the obstacles with small
dimensions and develop the code which can incorporate
these issues of EMC. Another objective is the
characterization of MSRC (Mode Stirrer Reverberating
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Chamber) and study of an object inside MSRC and
consequently the influence of this on the homogemsation
of EM field.
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