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Abstract: In order to study the problems of scattering by rough metallic surfaces, we have used Maxwell's

equations in covariant form within the framework of a non-orthogonal coordnates system adapted to the

geometry of the problem. Electromagnetic fields are written i1 Fourier's mtegral form. The solution 1s found by
using a perturbation method applied to the smooth surface problem, this is fully justified when the defects are

of small magnitude. For the direct problem, the mean value of diffraction intensity is obtained for random rough

surfaces of fimite conductivity by computer simulation. In the case of the inverse problem, the reconstruction

of the profile of the metal surface from values of the diffraction intensity, obtained by simulation, 1s found using

an iterative algorithm.
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INTRODUCTION

The problem of the diffraction of an electromagnetic
wave by a rough surface has become during these
last years significant topic of research 1n
electromagnetism! ™ because of its various applications
in optics, acoustics, propagation radio waves and radar
techmiques. The diffraction of the electromagnetic waves
by thin layers used in optics, the surface of the sea or
irregular grounds is the object of several applications.

a

Beside practical problems, various techniques are
employed: the Stylet with diamond pomt (risk of surface
deterioration and unreliability of the results), electronic
microscopy (requiring expensive equipment). The current

tendency 1s to widen the use of the optical methods based

on the study of the diffracted wave generated by surface
of interest when it 15 illuminated by Light. Several
researchers studied the case of the diffraction of a plane
wave by a periodically deformed surface®".

The problem that we will evoke mn this article relates
to diffraction by a random metallic surface of fimte
conductivity. One seeks, on the one hand, to characterize
the diffracted wave knowing the characteristics of the
diffracting profile (direct problem) and on the other hand,
to determine the surface topographic characteristics from
the diffracted wave characteristics (inverse problem).

The method suggested here is based on the use of
the covariant form of Maxwell’s equations written in the
framework of non-orthogonal coordmate systems adapted
to the limits of the structure!'d. The deformation is
limited in space so that a representation in Fourier integral
1s possible. The solution 18 found by using a perturbation
method applied to the smooth surface problem, this 1s

fully justified when the defects are of small averaged
magnitude (less than 1/10 of the wavelength 4). One
advantage of this method is that it may lead to analytical
calculations and thus 1t allows numerical simulations.

FORMALISM

Problem definition: We consider a surface whose
generator 1 parallel to the oz axis 1s supported by the
curve y= a(x), where a(x) is a function that is, at least,
twice derivable of the variable x which represents the form
of the surface profile ( Fig. 1). We consider this condition
for the types of studied surfaces.

A random rough surface is a surface whose profile is
not known explicitly but it is defined by its statistical
characteristics (average height of roughness, correlation
function, ete...).

The metallic surface characterized by its complex
index v is illuminated by a plane wave with a wavelength
1 where the veotor of wave i ( E‘ = 2n/) - located m the
xoy plane, forms the incidence angle 8, with oy axis,
6 being the angle of diffraction.

Fig. 1: Rough surface profile
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We show that this problem of diffraction is reduced
to the study of two fundamental cases of polarization
noted TE (electric transverse) and TM (magnetic
transverse), according to whether the electric or magnetic
incident field is parallel to the oz®'?. The total electric field
for the case TE, or the total magnetic field for the case
TM, remains parallel to the oz axis. It 13 the same for both
of the electric and magnetic diffracted field.

We will then indicate by F the complex amplitude of
the electric field in the TE case or of the magnetic field in
the TM case (by adopting a temporal dependence on exp
(jot).

The incident part I of the total field I for a plane
wave is expressed by:

F' = exp j(Byx —7,Y) (1)
With: B, =ksinQ, et %, =ksin0,
In the air, the diffracted field F * is defined by:
Fd (Xay) = F(X> Y) - Fi (X=Y) (2)

In any diffraction problem, three conditions must be
satisfied:

+  Maxwell's equations in each medium,

*  The conditien of radiatien ad mfimtum,

* The boundary conditions on the surface
separation between the two mediums

of

From these three conditions, we show that, for all
v >y, wherey, 1s the maximum value of a(x), the diffracted

field F ¢ is the sum of planar waves propagating towards
Y7 Y
Feoy) = [TR@epC B gyndp 3
with: 1 = Jk* — B ‘B|Sk
% =B - B>k @

R(P) being the complex amplitude of the diffracted
wave in the direction 8 such that:

B=ksing
¥ =kcosb

(3
The part of the integral (3), for |B| > k corresponds to
the evanescent waves.

Equations formulation: The problem can be formulated by
using Maxwell's equations m covariant form, written in
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a coordinated system known as the translation system,
which 1s defined from the Cartesian system (x.,y,z) by
posing u = y-a(x), a(x) characterizes the deformation
(Appendix). The diffracting surface 1s supposed to be
infinite in 0z's direction: we consider the problem with two
dimensions (8/0z=0) andaharmonic wave (0/0t= jo).

As we have already shown'""?, the general form of
Maxwell's equations allowing the simultaneous
calculation of the amplitude of the fields n each
medium for both modes TE and TM 1s:

2 2 2 &)
6—E+k2F+(l+a'2)a—E—2a’ OF o0 _o| ©
ox ou oxdu du
kG:j(lJra'z)gf a’g
au o
with: a'=da(x)/0x;, a"=8"a(x)/ox’
For the mode TE: F=E_ E,=E,=ZH,=0
G=7H,; ZH,=0.
And for themode TM: [F=7H,; E,=7ZH =ZH =0
G=E. E =0

A: is the wavelength in the considered medium.
Z: 18 the impedance of the medium.

When the deformation is limited m space, the
functions a(x), F and G can be expressed in Fourier
integral form. Let A(B), f(B,u) and g(P,u) be their Fourier
transforms respectively. The use of the convolution
property makes it possible to obtain, by applyng the
Fourler transform of to the system (6), the following
system:

of ° af (7
P = [ @ -pas- o e
J [0 a-pad-a-pamn =D oy

—e0 —eo

e =i S j A~ )f ot Mor —

if T a-paG-a-pam®

—to—co

dady

Considering: v*= Kk -[*

When the average amplitude of the deformation is
low compared to the wavelength, a good approximation
can be made by seeking the solutions f and g in the
form of entire series of a parameter t (0<1 < 1) which 1s
taken to be equal to /A (h being the average height of
roughness). This choice is very suitable for the majority
of the real world problems.
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E = ®)
fRw=Y v Bux  gBuw=37vg@u
p=0 p=0
By substituting the expressions (8) into the

differential system (7) and identifying the terms having

the same degree in t, we find to the p® order % the
following system:

' (B, AR — .
T o= [ A0 Py S s
TTY(B o Y)A(B o Y)A(Y)afpz(zau)d dy

LA T ou

ke )= 20 j ap-ar" P2 (ouxia-
0D 4 af .

if [vB-o- Y)A(B o Y)AS/) ;ua ™ oy

@)
SOLUTION

To study the problem of diffraction by a rough metal
surface of finite conductivity, we are brought to solve the
system (9) in the two mediums (air, conductor). This is
done by recurrence starting from the undisturbed case
corresponding to a planar surface and whose solutions
are known. We define a quantity known as " diffracted
intensity " of light as the ratio of the power diffracted by
the rough part in the direction 8 (P = k sinf) with the

mcident power:

Re[ £*(B,u)g" (B.0) ] (10)

Re 'y, u)g" (B;.w) |

I*(6) = Pd(lej

Re [3] indicates the real part of S. The terms in u are
simplified in the expression (10). With a first order
disturbance, we find the following expression:

I'(0) = 9B, B, |AB—B,)[ (an
withe 2
‘knxu Lof % mode TE
S(B.By)= el
‘21{% 1-v )(x”x_v PP )‘ mode TM

AR )(x+vx)\

'= vk (v medium index) -
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‘\f Bu= X' 0 ket _'X u1+JX 0z
\1 \} 7')(1'*']7(.2

Where 1 1s the width of the deformation.
Simple letters correspond to the vacuum, whereas the
letters with prime correspond to metal medium.

DIRECT PROBLEM AND RESULTS

The random surface a(x) will not be defined analytically.
Tt will be represented by its statistical characteristics.
From the expression of the diffraction intensity (11) and
by carrying out an average of a great number of surfaces,
we obtain the average value of the diffraction intensity
given by:

—X

j a(x).a(x+Kk)exp(j(P— P, x)dxdk
N (12)

02| —

I'©®) = 9p Bo)

| b— |

1
2

By recalling that a(x) is null apart from the interval [-
172, 1/2] and by supposing that the width of the transition
zones between the plane zones and the modulated zone of
the surface (to ensure the continuity of the first and
second derivatives) 1s small compared to the width of the
surface, a(x).a(x+x)can be replaced by ¢ (K) for ke
[-1,1], which gives:

- 1
1*(8) = 8(B,B,) [ (0~ [kt exp(i(B— By (13)
-1

According to the theorem of convolution, we find

that:

B BO)*SIHCZ( (14)

19(0) = 8(B. By) 12 9 BP0 B=Poy,
21

whered is the spectral den51ty of the surface and (*)
represents the convolution product.

The average value of the diffraction intensity 1s
obtained from the expression (12), applied numerically
to five hundred samples of random rough surfaces length
1 (1=204 generated by simulation methods (Fig. 2) for
the  wvarious wvalues of the average coefficient of
roughness (1T=1, 10, 30,100  with IT=I/T. T being the
distance of correlation). The numerical procedure used
to generate is a spectral method
exposed by Thorsos 'Y, Bvery graph has traced for the
following numerical values: wavelength 4=0,6330mm,
average height of roughness h=0,05 L, metal:
angle of incidence B8;=30°.

such a surface

Silver,
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Fig. 2:Profile of the random surface
(@) 1T=1, () 1T=10, (¢)1T=30, (D)IT=100.

For 1T=1, the curve presents a maximum in the
specular direction. This is due to the fact that the surface
is almost flat. As soon as we increase the average
roughness coefficient, this phenomenon tends to
disappear and oscillating curves show up corresponding
to a successive band of bright and dark zones which 1s a
well-known phenomenon to opticians. A secondary
maximum appears on the graphs in the direction of
meidence: 1t 18 the phenomenon of Backscattering. It 1s
noted that with five hundred (500) samples, the average
value of the intensity is close to the theoretical value
given by the expression (14). This result will be better if
a larger number of samples is used.

Table 1 represents the average value of the total
diffracted power (integrated in all the directions above the
deformed surface, only the contribution of the deformed
part is represented). For each polarization, the wave
arrives under an angle of 30°. Four types of metals
(infimtely conducting, Alumimum, Silvery and Gold) are
represented.

The remarks drawn from thus table are as follows:

* In TE mode, Silver has a coefficient of reflectivity
larger than that of Gold and Alumimum and close to
the mfimitely conducting case.

¢ In TM mode, Gold has a coefficient of reflectivity
larger than that of Silver and Aluminium and close to
the infinitely conducting case.

¢ In TM mode, the value of the diffracted power is
clearly more significant than in TE mode.

Table 1: Average value of the total diffracted intensity

Inf. Cond. Aluminium Silver Gold
Mode TE 1,632x10° 1,025x10° 1,415x103 1,210x1072
™ 2,734x10° 2,124x%10° 2.321x10° 2,405x10°

Angle of incidence 8, = 30°, LT=30, NE=500.
Metal: Aluminium v = 1,2099-)6,4299

Silver v = 0,06699-14,040

Gold v =10,161943,2103.

Inverse problem and results

For the inverse problem, the theoretical difficulties are
larger than those of the direct problem. The search for the
solution encounters instability complications.  The
studied inverse problem 15 the following: knowing the
wntensity of diffraction, rebuild the profile of rough
surface. At the begimning, one is given the intensity of
diffraction T, range of the
diffraction angle as well as a coarse estimate of the
interval L. In fact, n the study presented here, mtensity
I, consists of measurements simulated using a computer
in the following way: a certain profile a, is a priori
selected; I, 1s then the intensity corresponding to this
profile calculated a computer using a direct program. As
the process continues, a, "is forgotten ", and one tries to
rebuild it starting from T, .

The intensity of diffraction corresponding to an
unspecified profile a(x) depends obviously on a(x); it 1s
noted. I(8,a) This correspondence is not linear. Tnitially,
a natural idea consists of restricting the study to small
variations 61 and da for I (0) and a(x). With a {irst order
approximation in da_, there is a linear relation between
8T and a expressed by:

1z

810)= | N(B.a,x)da(x)dx (15)

-1/2

measured for a certain

where the function N{P,a,x) is called as kernel.

From the relation (15), linear to the first order between
the intensity of diffraction I and the deformation a(x), we
can solve the mverse problem using an iterative algorithm.
That is to say T (8) intensity of diffraction is given a priori,
and a(x) a profile of the associated rough surface that we
admit the existence.  Let us also suppose that a first
approximation a, (x) (even coarse) of a(x) 13 known. With
the help of the algorithm associated with the direct
problem, one can calculate the intensity of diffraction T,
associated to a, If a; 1s not too far away from the
solution a, the functions da=a-a, and BI=I-I, are small
variations roughly bound by the relation (15).

Let us calculate the function a,
equation:

solution of the

12
1-1,= | NB,a,x).(a, —a,)dx 16)
-1/2
The function N{B,a;,x) is associated with known

and calculable surface a,(x).
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Fig. 3: Average value of the diffracted intensity Angle of incidence 8,= 30° metal: Money, Polarization TE, number of
sample NE=500. (a)1T=1, (b) 1T=10, (¢) 1T=30, (d) IT=100
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However, a solution without some precautions may lead
after the first iterations to mstability. To avoid this

problem, it is necessary to find a method of
regularization. The regularization consists in replacing
the solution of (15) by the following variational

problem: find the function da which produces the
minimum of the expression:

I(8ay=1 (8ay+1],(da) )]

1/2

j N(B,a,x).8a(x)dx — 8I(B)

-1/2

2
with: Jl (63) _

Jz (Ba) = J|5a(X)H . According to (11), the kernel N (B, a, x)

will be given as:

172

N(B.a,x)=25(B, By) j a(x') < cos[(B— B )(x - x)] dx’
-1/2
(18)

If da carries out the minimum of I(8a), so will be
6J(8a,)=0..One obtains a first order Fredholm integral
equation which should be solved numerically to
determine da, The determination of the parameter of r is
performed in order to ensure stability. All of the study
1s restricted to the TM case, but the same method would
be quite applicable to the TH case. The first estimate of
surface to be simulated 1s Gaussian.

Figure 4 shows an example of reconstructing random
surfaces with weak height, illumimated under the incidence
angle 6, = 60° by a planar wave length 4 = 0,6330 m m
and presenting a modulated area of a width 204 with
Silver as a metal. The smaller is the average number of
roughness; the better is the reconstruction of the profile.
Assoonas 1T is increased, some difficulties emerge in the
rebuilding of the profile.

CONCLUSIONS

With an aim of studying in a precise way the problem
of diffraction by a rough metal surface, we used Maxwell’s
equations i covariant form and the reference frame of
translation to write in a simple analytical way the
boundary conditions. By considering the function a(x)
which represents the deformation as a disturbing
function, we could seek the solutions by a method of
perturbation.

The study of the direct problem enabled us to find
the analytical expressions of the intensities of diffraction
i the general case (the form and the diffracting surface
metal). We can generalize this method for the case of
rough dielectric surfaces of one or several layers used
integrated optics.
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The algorithm used for the inverse problem gave us
a good reconstructed profile diffracting in the field of
resonance.

APPENDIX

Maxwell's equations under covariant form in translation
coordinate.

In an arbitrary frame of reference (orthogonal or not)
of athree-dimensional space , the Maxwell's equations in
covariant form, between the covariant components E' and
H of the vectorsfandyand the contravariant
components D and B' of the pseudo vectors ) and R are
written as follows!:

y ABi
itk _
ST
58 =0, (19)
- 20
ijk
E.J 8ij = W’
BiDl =P,

1,.k=1,2,3. where E* represents the Levi-Civita' indicator’
The analytical form of these equations is not affected
by the frame of reference (these are the affine equations)
contrary to the classical case (rot E— _aB/at )
For an unspecified medium these equations are
accompanied by the relations of medium, they depend on
the frame of reference (metric relations):

pY Hj (20)

For an 1sotropic homogeneous medium of permittivity €
and permeability p, the pseudo-tensors of medium &’ and
Mijare written:

el =eeg?, b =gt

gland g; are the contravariant or covariant components
metric tensor of the frame of reference and G 1s the
determinant of this same metric tensor.

g =det(g;)

(21)

(22)

From these and relation Maxwell's equauons of
medium and for a monochromatic wave ( — it )18
then possible to write the following 8Equat10ns of
propagation:

(23)

gl_]k glmn 8. a

u«/_

with: k= w/c and g, p, ¢ = 1.

=0

E, B {18 Jae }2
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The coordinated translation system x,u,z is defined
starting from the Cartesian system x, y,z by letting:

1+a” a' 0 1 —a' 0
(gu): a' 1 o And (g"): —a' 1+a” 0
0 0 1 0 0
With: - dat)
dx

In the case of the problems with two dimensions
(@ _ o ), there are two types of solution (or polarization):
dz
TE = Transverse Electric, E,# 0, H, =0,
TM = Transverse Magnetic, E,= 0, H, =0,
It 1s possible to find a single system of equation for
the two types of polarization, by letting:

E,=E, =0, E; =E, =0. H=H,=JepnG, (24
TE H,=H, O,
E;=E,=F, Hy;=H, =0.
E,=E,=-G, E,=E, 0, H;=H, =0, (25)
™ H,=H, =0,
E;=E, =0, Hy=H, =/c/pF.

If a surface with u=constant separates two mediums,
then F and G are continuers on this surface.

A first relation for F is given by the equation of
propagation (23) for [ =3:
(26)

BF

2
@-FKZF-F(I-F&'Z) raF

. -
xdu

"

2
8F_2
u? du

5T
One second equation for G 1s obtamned from (19), for
example for TE polarization:

i o8 . i 27

£90 =~ jopfeeH; @7
By taking into account the metric tensor, this will give

fori=1 andT =2, the following expressions:

32E3 = — jUJI.,LHl + jUJI.,La'Hz, (28)

— B3 = jupaHy — jupd1+a” H,.

After linear combination and using the functions F and G,

we can write:

oF

3%

It 1s also possible to obtain the same relation for the
modes TM.

kG = ](1 +a12)gu_F_ jar (29)
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