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Gradient Descent Adjusting Takagi-sugeno Controller
For a Navigation of Robot Manipulator

S. Kermiche, M L. Saidi and ILA. Abbassi
Asutomatic and signal Laboratory, Faculty of Engineering,
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Abstract: This paper presents a solution for the problem of leaming and controlling a 2R-plan robot
manipulator n the presence of fixed obstacle. The objective is to move the arm from an initial position (source)
to a final position (target) without collision. Potential field methods are rapidly gaimng popularity m obstacle
avoidance applications for mobile robots and manipulators. The 1dea of imaginary forces acting on a robot has
been suggested by Andrews, Hogen and Khatib. Thus, we propose an approach based on potential fields
principle, we define the target as an attractive pole (given as a vector directly calculated from the target
position) and the obstacle as a repulsive pole (a vector derived by using fuzzy logic techmques). The linguistic
rules, the linguistic variables and the membership functions, are the parameters to be determined for the fuzzy
controller conception. A learning method based on gradient descent for the self tuning of these parameters is
mtroduced. Therefore, it 1s necessary to have an expert person for moving the arm manually. During this
operation of teaching, the arm moves and memorizes the data (inputs and outputs). This operation 1s used to

find the controller parameters in order to reach the desired outputs for given inputs.
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INTRODUCTION

Yesterday’s teleoperator movements were quite
easily controllable by a human operator, but in nowadays
the accuracy and complexities of the positioning of robots
may be better achieved by supplementing human
capabilities with computer power in order to generate
these complex trajectories and to control the robot
manipulator accordingly.

Robot manipulator is designed to perform efficiently
very complex tasks
particular, they are required to move in the presence of

in cluttered environments. In

fixed or even mobile obstacles, tracking a prescribed
path  without any methods  for
generating collision-free paths are adapted from mobile
robots! . Robot serial manipulator need to avoid both
the end-effectors and the links. For this reascen, their
accessible workspace 18 rather limited unless their
number of joints increases.

The manipulator moves in a field of forces where the
goal position is an attractive pole and where obstacles
and kinematics joint limits are repulsive forces (Fig. 1),

These two forces determine the arm’s orientation, the
attractive force is calculated from the goal position and for

collision. Some

the repulsive force a fuzzy techmque 1s used.

The arm, the obstacle and the target (goal) can take
any position inside the workspace.

The fuzzy controller using the obstacle avoidance is
able to evaluate the repulsive force corresponding to the
obstacle’s relative position.

The learning method
adjustment of the parameters. During manual training the
controller memorizes the data.

allows the automatic

The following method uses an adjustable fuzzy
controller for the parameters determination (the number
of memberships functions, the linguistic variables, the
rules etc..)

MODELLING

The modelling consists to represent the arm
behaviour by algebraic equations, here geometric model
is used.

The parameters of the arm model are joints and
operational positions. The first parameters permit to
modify its geometry and the secondary determine the
position and the orientation of the end-effectors™®.

The direct geometric model is described by the
following equations :

X, = L,Cosq, + L,Cos(q, +q,) (1)
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Fig. 1: Coordinate frames for two-lnk planar robot
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Fig. 3: Membership function for the 1st input variable O,

Y, = L,Sing, + L,Sin(q, + q,) (2)

And the inverse geometric model (IGM) by:
q, = +AreCos {| X + V2 - (L3 + I )}/2L1L2} (3)

(Y, /X, ){|L, + L,Cosq, |- X,L Sing, |

4)
([L, +L,Cosq, |+ Y,L,Sing, }

q, = Arctg

COLLISION AVOIDANCE STRATEGY

A fuzzy system is a system based on the concepts of
approximate reasomng: linguistic variables, fuzzy
propositions, linguistic i1f-then rules.
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The goal is to realize a fuzzy controller able to
evaluate the repulsive force (vector) V., characterizing the
actual relative position of the obstacle!™ '™,

The controller has two mputs and one output, the
inputs are the observation angle 0, and the distance d,,,
towards the obstacle, the output 1s the repulsive vector
Vo (Fig. 2).

The orientation angle depending on V, is the input of
the arm and its outputs are the coordinates ( x,, v, ) and
the direction 0,

Fuzzification: The fuzzification module performs two
tasks:

»  Input normalisation , mappmg of nput values mto
normalised universes of discourse and

»  Transformation of the crisp process state values mto
fuzzy sets, m order to make them compatible with the
antecedent parts of the linguistic rules that will be
applied in the fuzzy inference engine.

Fuzzification of the angle 0,: We suppose that the
arm can perceive an obstacle in a direction inside the
interval [-90° 90°].

The membership function is represented by seven
fuzzy subsets of Gaussian form (Fig. 3):
LL: Large Left, ML: Middle Left, SL: Small Left
ZE: Zero Environment; SR: Small Right; MR: Middle Right
LR: Large Right

Fuzzification of the distance d: We admit that the arm
can detect an obstacle from a distance of 30 units.

The membership function is expressed by three fuzzy
subsets (Fig. 4). 3: Short; M: Medium; L.: Long

Fuzzification of the repulsive angle Orep: The
membership function of the repulsive angle has a
constant form belonging to the mterval [-135°135] (Fig. 5).

Interference: Let x, x,, ..., X, be linguistic variables on the
mnput space X = X, x X, x ... x X, and y be a linguistic
variable (or a real variable) on the output space Y; then
two forms of fuzzy inference rules by the fuzzy “IF ..
THEN ...” rule model can be described as follow:

Form (1): Fuzzy Inference Rules by Product-Sum-Gravity
Fuzzy Reasoning Method.

The fuzzy inference rules are defined as:

Rule 1: TF x, is A and x, 18 Ay, and ... and x, is A, THEN
yis B, )
Rule 2: TF x, 18 A, and X, 18 Ay and ... and x,, 18 A, THEN
yis B, (6)
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Fig. 4: Membership functions for second input variable
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Fig. 5: Membership function of the repulsive angle Orep
3.2. Inference

Rulen IFx,1s A, andx,1s A, and ... and x_1s A, THEN
yis B, (7
Where A; j=1,.2, ..m;i=1,2, .. n)and B are fuzzy
subsets of X, and Y, respectively and the subscript 1
corresponds to the ith fuzzy rule.

Form (2): Fuzzy Inference Rules by Simplified Fuzzy
Reasoning Method.

The fuzzy inference rules are defined as:

Rulel:TFx,1s A and x, 18 A, and ... and % 1s A, THEN

yisy ()
Rule 2: TF x,is A and x, 18 Ay and ... and %, is A, THEN
yisy, 9)
Rulen IFx,1s A, andx,1s A, and ... and x_1s A, THEN
yisy, (10)

Where A, (j=1,2,..,m;i=1,2, . n)isa fuzzy subsets
of X; and y, is a real number on Y.

For examples the representations of these rules would
then be constructed as folloows:

TF (0, isLLandd, is 8) THEN 0, is APP OR

IF (0, is LL andd,, is M) THEN 0, is TPP OR
IF{0,isLRandd,, sL) THENO_i1s EZ

The rules are summarized in the following Table 1:

Table 1: Fuzzy rile table
Outs

0.0 LL ML SL EZ SR MR IR
8 APP MP AGP TGN AGN MN  APN

des ™M TPP APP MP GN MN APN  TPN
L EZ TPP APP PN APN TPN EZ

DEFFUZZIFICATION

The defuzafication module performs the conversion
of the union of modified fuzzy sets into a crisp output
value followed by the denormalisation of this value.

The height method is the simplest and fastest one
because only peak values of the modified fuzzy sets are
taken mto consideration. The resulting crisp output 1s the
weighted sum of the peak values with respect to the
heights of the modified fuzzy sets.

It 1s interesting to notice that for this type of
defuzzification, we do not need to define the widths of the
membership functions. Tt follows that a set of output
membership functions can be defined as illustrated in
Fig. 5. This type of membership functions 1s called
singletons. This definition corresponds to the special
case of Takagi and Sugeno’s controller.

ADJUSTABLE FUZZY CONTROLLER

The controller is based on Sugeno inference method
and the defuzzification uses height method. The
controller’s output is function of linguistic variables™.

Linguistic rules: We suppose that the controller has
M+K linguistic variables, M inputs, K outputs and N
linguistic rules™ ",

Learning method: Tt is used to determine the controller
parameters values in order to reach the desired outputs
for given mputs (Fig. 6).

General algorithm: The model is desribed by the
following equations™:
du
—=f(ux,z.t
a e an
y=g(ux,zt)

The parameters estimation consists to minimize the
criterion V:

v=E{E®)} (12)

or V= E{;IZN:(é(t))z} (13)



J. Eng. Applied Sci., 1 (1) : 24-29, 2006

Desired output
b i
Input Output+ Error
—_ Fuzzy
troller -
Adaptation

Fig. 6: Training scheme

E: means
N: number of iterations
e(t): learning error vector

In order to minimise the learning error, we will
find the e minimum of the criterion function V. Tt can be
found by solving:

| .
0z,

(14)

V.V gradient of V
P: number of adjustable parameters

z(t+1)=2(t)- FPVZV[ZP (t)} (15)
I',: is the predefined constant named learning rate.

Adaptation of parameters of Takagi and Sugeno’s
controller: The Takagi and Sugeno’s fuzzy controller has
three types of parameters to adapt:

T
+  Centre values a= (8, 8ty ) s

s width values b= (bbb )

L] COISGUETICES values c= (C“,..., CppoeeesC

Then (16)

= T
Z={(@ 0By Pypaeees iy O n O )

The number of parameters to adapt 1s:

P=2NxM+KxN

The vector which minimize the criterion function is
given by:
-V -0V -0V -0V -9V -dV _
ay " day, 8b, @by, 0g, doy

0
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And the recursive (learning) rules:

anm(t+1):anm(t)fl"aa§(z) amn
anm
by (1) = by, (1)-T, 22 (18)
nm nm b 6bnm
o (t+1)=c, (t)-T. (2 (19)
nk nl c aan

If the membership functions of the controller

are Gaussians, then the partial derivatives of the
criterion V are:
o & 1 X —a
2 :kZ(Yk Yo (0w~ ¥i ) mbz =
nm =1 u nm
; n
av & u X, —a,,
R AL
nm = u nm
; n
av u
6(:71* (Yk_}’ak) £

n=1

The adaptation of the parameters of the Gaussians
and weights 15 done by

n=1

Linguistic rules extraction: The problem of the linguistic
rules extraction is to convert the parameters (a,,, by, Cu)
at the end of the adjustment to linguistic values.
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To solve this problem we compare the membership
functions defined by a,, et b, with preset ones whose
lingustic terms belong to a set of trajectories provides by
an expert person.

The controller parameters are identified by an
off-line procedure based on the memorized data and the
initial parameters.

*  Number of mputs M =2

*  Number of outputs K =1

¢+  Number of rules N =21

¢ Leamning rate =I',=0.05T1,=0051.=01

SIMULATION

The source, the target and the obstacle positions
are specified.
Test:
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Fig. 7.1: Before training
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Fig. 7.2: Training

28

200+
160
1204
804
40
04

40

-804
=120
-160

200

=200 -160 -120 -80 40 0 40 80 120 160 200

Fig. 7.3: Before training

Crisp membership function for the second input
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Fig. 7.4: Crisp membership functions for the second nput
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Fig. 7.5: Crisp membership functions for the first input
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Fig. 7.6: Crisp membership functions for the output

Before trammng the arm moves from a start
configuration to a goal configuration without
collision (Fig 7.1).

Figure 7.2 shows the trajectory specified by
the operator from the initial position to the final
position (traimng).

Figure 7.3 describes the arm trajectory with collision
avoidance after training.

We note that the trajectory after traming is optimal
compared to the one before training (Fig 7.1 ).

We observed that after trammng, the
concentration of singletons are located on left side. This

have

15 due to the avoidance of obstacle 1s done on the right
side (Fig. 7.4, 7.5 and 7.6).

CONCLUSION

In this study, we have presented a solution to the
problem of trajectory tracking without collision. The arm
motion depends on the potential field approach.

The manipulator moves in a field of forces where the
goal position is an attractive pole and where the obstacle

1s a repulsive pole. The attractive force 1s calculated from
the goal position and the repulsive force is determined by

a fuzzy logic.

The manipulator has to follow a trajectory specified
by the operator from a start configuration to a goal
configuration, which goes through a fixed obstacle. When

20

a potential collision with the obstacle is detected, the
collision avoidance redirects the arm motion thanks to the
repulsive force in order to generate a new collision free
path. The method has been tested on two-link robot arm
and the results are very satisfactory.
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