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Abstract: This study discusses the design and development of an Artificial Neural networl (ANN) model to
monitor the force applied to a strain-gage load cell. The reference voltage applied to a Wheatstone bridge
formed by the strain gages, the amplification of the Wheatstone bridge’s output voltage and the digitized value
of the amplifier’s output voltage acquired by a microprocessor represented the input to the ANN model. The
output of the ANN was defined as the estimated value of the load acting on the load cell. In this study, a 5-3-1
neural networl architecture proved to yield the best results, being the backpropagation Levenberg-Marquardt

optimization algorithm the selected traiming paradigm. Based on the results obtammed, it was concluded that

neural networks offer a good option to calibrate an instrument, equipment, or system that operates under

variable input conditions.
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INTRODUCTION

A stram gage 1s an electrical device consisting of a
flat coil with a nominal electrical resistance value of 120 or
350 Q. The coil is built between thin insulating plastic
layers and to assure electrical 1solation between the gage
wire and the metal on which the gage 1s installed, no less
than 50 MQ of electrical resistance must prevail after
installation. The gage is installed on the surface of a
mechanical part at the point and direction where the strain
1s to be measured.

An important property of strain gages is the gage
factor, GF, which is the sensitivity of the gage. Such gage
sensitivity 1s proportional to the ratio of the change in
electrical resistance to the change in length or strainl.
Knowing the gage factor, the strain is computed once the
change in the gage’s electrical resistance, AR, is
measuwred. A Wheatstone bridge converts this change
mto resistance to a change in voltage. The bridge
consists of four main resistors arranged in such a way
that by measuring the output voltage, V, and by knowing
the mput voltage V,, the electrical resistance change, AR,
m the strain gages can be estunated. In general, the
output voltage, V,, is not zero, even when there is not
deformation of the strain gage because the resistors used
to complete the bridge, or the gages themselves, are not

always identical. The input voltage, V,, must be low,
approximately 5 volts, to reduce heat generation in the
resistors™.

connect

There are ingenious ways to mstall and
strain gages to a Wheatstone bridge to
compensate for temperature changes or undesired cross
sensitivity effects!™.

This study discusses the calibration of a load cell
using a neural network model. The load cell was made
with strain gages installed on a cantilever aluminum
beam. The strain gages were comnected to a
Wheatstone bridge and the output signal of the bridge
was amplified and collected using an analog-to-digital
converter. The microprocessor transmitted the signal by
infrared means to a computer. Although this type of
welghing systems usually perform well, frequently, it 1s
necessary some type of calibration because of inherent
non-linearities and variation of parameters. These are
some of the main reasons why a newral network was
used for data cormrelation, as a counterpart of the
traditional trial-and- error procedures currently in use.
The neural networl’s most important task was to
determine an accurate weight value regardless its relative
location m the load cell range, considering any possible
variations of its inputs. It wasthought by the authors of
this study that such a neural network model might
represent a viable means for calibrating such a system.
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The artificial neural network paradigm: In its most
general form, an ANN can model the way in which the
brain performs a particular function. The human brain
15 a highly complex, non-linear, and parallel
information-processing system with the capability of
performing computations  (e.g., pattern
recognition, perception and motor control) many times
faster than the fastest digital computer in existence today.
ANNs are simulated neurons interconnected in similar

certain

manner as the human brain’s neurons.

There are tlree basic elements of an ANN
model: a) a set of connecting links or syrapses, each
characterized by a weight of its own. Specifically, an nput
signal to the synapse j comnected to neuron k£ is
multiplied by the synaptic weight w,,, b) an adder, which
sums the input signals weighted by the respective
synapses of the newron and ¢) an activation function,
which limits the permissible amplitude range of the output
signal to some finite value. It defines the output of the
neuron in terms of the induced local field, which is formed
by the linear combiner output v, and the bias b, This
externally applied bias is used to increase or lower the net
mput of the activation function.

The ability to leam and improve its performance from
examples is the ANN’s fundamental trait. Haykin'
defines as learning, in the ANNs context, the process by
which the free parameters of the ANN are adapted
through stimulation provided by the environment where
the network is embedded. Tnstead of following a set of
rules, ANNs are able to learn underlying relationships
from a collection of traimng examples. ANNs are usually
classified into two main categories: recurrent networks, in
which loops occur because of feedback connections and
feed-forward networks, in which the network structure
has no loops. The choices of network architectures are
mtimately linked to the learning algorithm used in the
training of the network.

Multilayered, feed-forward, non-linear network
models are utilized for general-purpose and generalization
applications. These types of networks are commonly
known as Multilayer Perceptions (Maps). Maps have
been successfully applied to solve diverse problems by
training them in a supervised environment. The Back Error
Propagation algerithm (BEEP) presented by™, also known
as the Generalized Delta Rule, 13 the most widely used
supervised learning algorithm for MAPS. BEEP learns to
generate a mapping from the input space to the output
space by mimimizing the error between the desired output
and the actual output produced by the network. At each
iteration, neurons slightly adjust their input connection
weights in the direction that reduces their signal errors.
This process 1s repeated for subsequent tramning patterns.

Once trained, the MLLP is able to identify features in input
patterns and to produce meaningful outputs based on the
detected presence (or absence) of those features in a new
pattern. In short, BEEP is a gradient-descent technique,
which is basically an iterative version of the simple
Least-Squares Method (LSM), adapted to non-linear,
multidimensional relationships.

ANN Applications in Systems Calibration: An important
characteristic of an ANN 1s that all the neurons can be
trained, under supervised or unsupervised learning, i an
inter-dependent way, to associate, learn and/or classify
information. In the past, neural networks have been used
to calibrate, linearize, estimate, or fit data obtained from
tracing the behavior of dynamic systems through sensors.
A three-layered artificial neural network was used to
calibrate a displacement sensor mechanism'. The results
obtamed were compared against curve fitting results and
it was concluded that the ANN-based approach was the
best alternative for the job.

Moreover, an ANN was used to monitor the behavior
of a thermistor by linearizing 1its mput-output
relationship™.  The developed network consisted of a
feed-forward network with two hidden layers.

In another reported application of artificial neural
networks to dynamic calibratior, the force/torque sensors
used by a robot to estimate the weight of an wnlnown
payload was calibrated via a neural network®. This type
of robotic calibration is critical to determine the correct
grasping force to be applied by the robot’s arm when
picking up an object, so that slippage and product
damage can be avoided.

A multi-layered ANN was also developed to calibrate
a high-pressure measuring system with a non-monotonic
behavior greatly influenced by
temperature changes. A better quality calibration than the
one obtained through the conventional spline-based

and which was

method of calibration was reported by the authors. The
calibration obtained through the ANN was so effective
that even for pressure reconstruction, temperature
measurements were not necessaly[g].

Finally, an ANN model was constructed for
measurement calibration verification in power plants. As
in many other industries, instruments used in power
plants need to be re-calibrated on a periodic basis. An
ANN was used to predict the reading of an mstrument
through readings from other dissimilar mstruments.
During this study, on-line parameter identification
techniques and model-based observer methods were
developed to assist m the traimng and testing of the
constructed neural network model™.
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Most of the difficulty experienced during equipment
calibration 13 due to wherent variability as well as the
non-linear nature of the mputs and outputs involved n
the process. The literature is clear in peinting out that
ANNs can adequately be trained to learn and estimate
non-linear data originated from measurements!".
However, for the trained ANN to be useful, a high degree
of repeatability of the system that generated the original
data is required.

From the experiences found in the literature, it was
determined that the problem at hand could be accurately
solved using an ANN. An extension of this effort could
be applicable to many other similar calibration situations.
After facing some problems with calibration because of
norn-linearities and variations, it 18 possible that a
particular piece of equipment can operate properly, with
good sensitivity and repeatability, but not well calibrated.
However, good signal processing would be required to
compensate for its “bad” calibration. In this study,
a neural network was used to tackle such a situation.

Description of the problem: The study mvolved the
calibration of a load cell consisting of two strain gages
installed on an aluminum cantilever beam with a
rectangular cross sectional area. One of the strain gages
was placed on the top surface while the other at the
bottom surface of the beam, which was loaded in bending.
Figure 1 shows the load, P, the cantilever beam and the
top side strain gage. Calibration of the load cell was
performed via a neural network. The mam objective of the
study was to design and train a newal network to
correctly estimate the weight, or load P, applied to the
load cell. Calibration data collected experimentally as well
as from the mathematical formulation of the system was
used to train the neural network.

Figure 1, it can be noted that when one of the gages
is in tension, the other one is in compression; however,
the strain on each gage 1s expected to reach the same
magnitude. These strain gages, R and R.in Fig. 2, are
connected to a Wheatstone bridge. The bridge is
completed by adding two resistors, R, with nominal values
equal to those of the strain gages. The reference voltage
of the Wheatstone bridge 15 V,, which represents one of
the inputs to the neural network model. The Wheatstone
bridge’s output voltage, V_, depends on the deformation
of the strain gages and on the mput voltage to the
bridge, V..

An electronic circuit was designed and implemented
to condition and process the signal output from the
bridge.
mtroduced to make the signal more manageable by other

First, an amplifier with a gamn, K_, was

Strain Gage

Fig. 1: Cantilever beam used as aload cell
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Fig. 2: Wheatstone bridge connections
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Fig. 3: Load cell signal acquisition and processing
devices. The gain, K, is another of the ANN inputs
since it can be adjusted and frequently measured to venfy
its value. This gain 1s not supposed to vary that much;
but, when it changes, it has an important effect on the
results. There was an analogical to digital (A/D)

amp >

converter following the amplifier, which converted the
amplified voltage to an mnteger value between 0 and 255
(one byte). This digitized value was another of the inputs
to the neural network.

Figure 3 shows a more complete illustration of the
load cell system where the neural network’s mputs and
output can be identified. The first input to the network is
the amplification value, which is called K ; the second
input 1s the Wheatstone Bridge’s reference voltage, V;;
and the third input 15 the digitized amplifier’s output
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voltage value. The amplifier’s output is basically the
Wheatstone bridge’s output voltage, V,, multiplied by
K. This digitized value was obtained with an A/D
converter driven by a  microprocessor. The
microprocessor sends the information serially via infrared
to a computer located at a certain distance, 3 or 4 meters,
from the measuring system. After that, the computer uses
the trained neural network to compute the weight or load
acting on the load cell.

In short, the Wheatstone bridge converts the weight
acting on the load cell to a voltage, which 15 then
amplified and digitized. Theoretically, it is expected that
the digitized value be proportional to the product of the
weight applied to the load cell, the amplification value and
the Wheatstone bridge’s reference voltage.

Description of the ANN model: The weighing system
described above 1s made of several components, each
mtroducing some uncertainty and error. Thus, the weight
being measured is difficult to determine accurately
throughout the load cell’s operating range. This occurs
because of vanations of the reference voltage applied to
the Wheatstone bridge, variations m the amplifier’s gain
and due to other nonlinear effects that are inherent to the
system.

Inputs to the neural network: There are three major
parameters that were selected as inputs to the neural
network model:

1- Amplification: K_,
2- Input Voltage to the Wheatstone bridge: V,
3- Binary information serially transmitted: V,

The inputs to the ANN were formalized as
shown in Eq. 1:

amp

v,
input _vector = v,
K __xV (1

amp

K, xVxV,

Arp

The input vector is 5x1 in size and its last two terms
are a product combination of the first three; therefore,
only the first three inputs are needed since the model’s
code takes care of adding the other two terms as well as
normalizing the all input vectors. The reason behind
mcluding these last two terms originates from previous
experimentation where the results obtained with only the
first three terms were not satisfactory. Furthermore, from

a theoretical stand, it is expected that the output from the
ANN be proportional to the mutual product of the first
three input terms. The input vectors were normalized by
dividing each one by its corresponding magnitude.
Outputs from the neural network: The network has a
single output, which is the value of the weight or load
applied to the load cell, which obviously is a function of
the three mam mputs:

weight = f{K__, V.V,) (2)

amp?®

The output values generated from the training of the
neural network were linearly scaled to values between O
and 1. As it was later determined, the function in Eq. 2 is
a combination of addition and multiplication of the three
inputs. The mam purpose of the neural network was to
determine the best function to map the weight surface as
a function of the inputs.

Training examples: Training examples  were
experimentally determined through the use of several
different known weights, combined with four different
reference voltages, V., applied to the Wheatstone bridge
and several amplification gains, K_ . A total of 154
traming input-output pairs were generated, as shown in
Table 1. All the sample data were used to train the
network.

Test Samples: Once the training of the neural network
model was completed, test input cases were fed into the
network to evaluate its performance. These test samples
are presented in Table 2.As it was done for the input
traimng examples, any mput vector presented to the
neural network required two additional terms as defined in
Eq. 1. The vectors were also normalized before being fed
into the neural network.

Neural Network Architecture and Training: Sigmoidal
transfer functions were chosen for the middle layers while
a linear transfer function was used in the output layer of
the network. The traimng examples were normalized to
have proper values to work with these transfer functions.
Training was performed using back propagation with the
Levenberg-Marquardt (BPLM) algorithm as numerical
optimization technique for relatively fast convergence!'l.
The advantage of the Levenberg-Marquardt technique is
that the results always go along the mimimization of the
error surface. However, the most significant disadvantage
of this technique is the computation of the modified
pseudo-inverse of the Jacobian, (JT + pJl)', for every
batch iteration. Where T 15 the Jacobian and p, 1s a
variable coefficient that is changed to adapt the algorithm
to the progress accomplished after every iteration In
some instances, this size of the matrix 1s so large that
computing its inverse becomes extremely complicated.
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Table 1: Training examples

Kamp=200 Kamp=300 Kamp=401 Kamp=250 Kamp=200 Kamp=300 Kamp=200
Vin=5.01V VinE9.04 Vin=5.01V VirE12.05 Vin=7.45 Vin=12.05 Vin=2.04
Weighty (1b) vd vd vd vd vd vd vd
0.00 30 T4 60 79 41 62 63
0.51 33 82 66 88 46 68 70
1.10 316 91 T3 99 50 75 79
1.62 39 98 79 1.6 54 82 85
2.07 42 105 84 115 58 87 92
to be Countinue
Kamp=200 Kamp=800 Kamp=401 Kamp=200 Kamp=300 Kamp=40 Kamp=300
Vin=9.04 Vin=5.01V Vin=9.04 Vin=12.05 Vin=12.05 Vin=7.45 Vin=5.01
Weighty (1b) vd vd vd vd vd vd vd
2.58 45 113 89 124 62 93 99
3.10 48 121 as 133 66 99 106
3.62 51 129 101 140 70 105 112
4.14 54 136 106 150 74 111 120
4.66 56 144 112 158 78 117 126
5.11 59 151 117 165 81 122 132
Table 2: Test sample
Test# 1 2 3 4 5 6 7 8 9 10
Kamp 250 200 350 350 250 350 250 350 300 401
Vi 5.01 6.23 9.04 7.45 5.01 9.04 745 7.45 9.75 8.25
vd 38 35 106 88 53 141 92 143 100 120
Weight (1b) 0.00 0.00 1.10 1.10 2.07 3.10 4.14 5.11 1.68 1.72
Table 3: Neural network result to the Test Sample for a 5-3-1
ANN result Expected result SeBrror RESUILTS
-0.088 0
-0.010 0
115 1.10 52 A small number of neurons, between 4 and 5, was
1.07 110 -1.9 used at first in a single middle layer to train the neural
2.04 2.07 -1.1 .
e 310 3 network. However, progressively, more or fewer neurons
4.08 414 12 were used as further tests were performed. The number of
4.98 5.1 -25 hidden layers was also constantly modified as the training
1.32 1.39 -4.9 d  While traini bei i d th
L6l 17 64 progressed. e training was being performed, the

For example, for a 3-9-1 network, the corresponding
matrix has a size of 46x46. Fortunately, nowadays, the
computational power required to perform such massive
computations is widely available to researchers.

The backpropagation algorithm with momentum and
variable learming rate, VLBP, was origmally implemented
mn the model. However, it proved to be nadequate for the
problem at hand due to the required adjustments of
parameters which led to convergence to stationary points
that were not the deswred mimmum"!.  Thus, the
Levenberg-Marquardt algorithm was mostly applied to
optimize the convergence of the networle. The training
data shown in Table 1 was fed into the network in a row
by row sequence. The total squared error was computed
per each epoch, triggering the start of the back
propagation learning.

results were displayed every one hundred epochs by
means of a set of three graphs as depicted in Figure 4.
The graph at the top displayed the convergence of the
network’s results to the tramming examples, the graph in
the middle showed the squared error per epoch and the
bottom graph provided data on the convergence of the
network to the test samples.

The best results were obtained with a 5-3-1 neural
network with sigmoidal middle layer transfer functions
and a linear transfer function for the output layer. Figure
4 shows the network’s results for epochs 5,100 through
5,400,

The minimum squared error per epoch was 0.025. The
Jacobian matrix started getting close to be singular and
Tt
was determined that the training examples as well as the

the program could not compute its pseudo-inverse.
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Fig. 4: Neural network 5-3-1

test examples were well approximated. The top graph of
Fig. 4 represents the convergence of the neural network
results to the training examples listed in columns 2 and 12
of Table 1. The horizontal axis of this graph represents the
input vector according to its position in both columns.
The “x” marks represent the expected weight values
(Column 1 values). The top graph reveals that the two
curves converged to the same values of weights in
several regions of the graph The bottom graph presents
the results obtained using the test samples from Table 2.
The horizontal axis of this graph represents the input
vector according to its position in the columns of Table 2.
The “x” marks represent the expected weight value
assoclated with the values of Row 5 of Table 2. Again,
the neural network generated an acceptable approximation
of the test samples, with errors under 6.4% for all of the
test points, as shown in Table 3. This error is acceptable,
but there is always a desired to reduce it.

A final step was talken to decrease the number of
neurons in the second layer to 2 instead of 3. However,
the results obtained were not as good as the ones
produced by the 5-3-1 neural networl.

CONCLUSIONS

The paper described the designing, traimng and
testing of a neural network model to calibrate a load cell
made with strain gages mstalled on an aluminum beam.
Two strain gages and two external resistors formed a
Wheatstone bridge and the output signal from the bridge
was first amplified and later acquired using an
analog-to-digital converter, which was controlled by a
microprocessor. The inputs to the neural network were the
reference voltage applied to the Wheatstone bridge, the
amplification gain used for applied to the Wheatstone
bridge’s output voltage and the digitized voltage value
acquired by a microprocessor. The network’s output was
the estimated value of the weight applied to the load cell.

The network’s main objective was to learn an
accurate input-output relationship of the variables

involved in the load cell system. The best results were
achieved using a 5-3-1 ANN configuration.  The
backpropagation Levenberg-Marquardt (BPLM) algorithm
was used to train the network and a minimum squared
error per epoch of 0.025 was achieved for the 154 traming
examples. The network was tested and errors under 6.4%
were obtained for all the test samples. Training of the
neural network via a BPLM algorithm took approximately
25 minutes on a Pentium 1T Personal Computer. Based on
the results obtained m this study, it was concluded that
neural networks offer a good viable means to calibrate and
correlate input-output data of equipment that operate
under multiple variable inputs.
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