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MicroRNAomes of Porcine Arterial and Venous Blood
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Abstract: Blood plays an important role in many biological processes and circulating microRNAs (miRNAs)
n the blood have been reported to be biomarkers for various physiological and pathological states. However,
few studies have examined porcine blood miRNAs, especially arterial blood miRNAs. Here, researchers
sequenced the microRNAomes of porcine arterial and venous blood samples in which we identified 277 and 294
known porcine miRNAs, respectively. In both blood samples, highly expressed miRNAs were implicated in
erythropotesis and angiogenesis. A total of 57 miRNAs showed sigmificantly different expression levels (p<0.01)
between arterial and venous blood of which seven were enriched 1n arterial blood and five were enriched in
venous blood by more than a 1.5 fold change. Interestingly, functional enrichment analysis of the genes
predicted to be targeted by the enriched miRNAs indicated that arterial blood was mainly associated with the
immune response and venous blood was primarily associated with apoptosis and the hypoxia response. The
results suggest that the 12 miRNAs with differential expression should be considered as biomarkers for
physiological differences between arterial and venous blood and that they may help promote the further

molecular diagnosis of blood.
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INTRODUCTION

Blood 1s a vital amimal body fluid that delivers
essential substances such as nutrients and oxygen and
removes carbon dioxide and other metabolic waste
products from the cells of the body. In addition, the blood
can also transport hormones and signals, regulate core
body temperature and help to fight infection m open
wounds. According to differences in oxygen content,
bleod can be divided mto two kinds, venous blood and
arterial blood. Venous blood 1s typically colder than
arterial blood and has a lower pH, a lower concentration
of glucose and other nutrients but a higher concentration
of urea and other waste products (Forster et al., 1972).

Various nucleic acids that are readily accessible n
the blood play a critical role in a wide range of physiologic
and pathologic processes (Bremnes et al., 2005).
MicroRNAs (miRNAs), small non-coding nucleic acids,
present in the blood have spar (Wu ef al., 2007) ked
mterest recently because of ther potential use as
biomarkers. Increasing evidence has shown that the
bicinformatic analysis of miRNA profiles
discrimination between whole blood samples of cancer
patients and healthy controls with >70% accuracy
(Hausler et al., 2010, Huang et al., 2010, Rothet al, 2011).
However, little is known of the miRNA expression profile

enables

in arterial blood and the differences between arterial and
venous blood have yet to be analyzed (Dai et dl,
2007, D1 Stefano et al., 2011; Keller et al., 2011). The
identification of differentially expressed miRNAs between
arterial and venous blood would however be beneficial for
further molecular diagnosis based on blood.

Here, researchers present a comprehensive analysis
of miRNA expression profiles between pig arteral
and venous blood based on small RNA-sequencing.
Researchers 1dentified specific miRNAs associated with
different functions between arterial and venous blood
which could be considered as biomarkers to distinguish
the two blood types.

MATERIALS AND METHODS

Blood samples collection and RNA isolation: Arterial and
venous blood samples (5-10 mL per piglet) were collected
from three healthy female piglets aged at 30 days. After
been anticoagulant treatment, all blood samples were
aliquoted into centrifuge tubes and stored at -80°C.. Total
RNA was isolated from arterial and venous blood samples
using TRIzol Reagent (Takara, Dalian, China)according
to the manufacturer’s protocol The RNA quality
was determined wsing formaldehyde denaturing gel
electrophoresis.

Corresponding Author: Lin Bai, College of Amimal Science and Technology, Institute of Amimal Genetics and Breeding,
Sichuan Agricultural University, 625014 Ya’an, P.R. China



J. Anim. Vet. Adv., 13 (1): 21-27, 2014

Small RNA libraries construction and sequencing:
Qualified RNA was prepared for sequencing samples as
follows: equal amounts (5 ug) of total RNA was isolated
from three individual arterial blood samples were pooled,
approximately 15 pg of total RNA was used for library
construction, the same as venous blood sample. A pair of
Solexa adaptor was ligated to the 3 and 3' ends of the
small RNA fraction (10-40 nt) which was isolated by
15% Polyacrylamide Gel Electrophoresis (PAGE). The
small RNA was then converted to <¢DNA and
amplified by RT-PCR. Subsequently, the enriched
cDNA was sequenced on Genome Analyzer Instrument
(GAT, TNumina, San Diego, CA, TJSA).

Sequencing data analysis and identification of miRNAs:
According to the method describe by Li et al. (2010), the
approach to process raw data reads were modified after
processing with Tllumina’s Genome Analyzer Pipeline
Software. The raw data reads were generated after
applying a series of additional filters: reads without the 3'
adaptor, 5' adaptor-contaminant; being longer than 16 nt
and shorter than 29 nt; not be junk reads (<2N, <7A, <8C,
<6G, <JT, <10 dimer, <6 trimer or <5 tetramer);, not
matching to porcine known classes of RNAs in the NCBI
(Pruitt et al., 2012), Rfam (Gardner et al., 2009) and
Repbase database (Kohany et al., 2006); been observed
at least two times. The reads passed the criteria were
called high-quality reads. The high-quality reads were
then mapped to the pig genome (Sscrofa 10.2) using the
NCBI local BLAST package (http://blast.ncbi.nlm.nih.
gov/). First, map the high-quality reads to porcine known
miRNAs and pre-miRNAs in miRBase 19.0. The mappable
reads were then mapped to pig genome to obtain their
genomic locations and annotations.

Prediction and functional annotation of miRNA target
genes: Due to the highly functional conservation of
miRNAs and the absence of the porcine mRNA-miRNA
interactive algorithm in current version, miRNA target
predictions were performed by the online databases of
PicTar and TargetScan human 6.2 based on human
mMRNA-miRNA interactions. The overlaps of results from
two databases composed the final predicted targets. The
Gene Ontology Biological Process (GO-BP) terms and
KEGG pathway terms enriched in predicted target genes
were determined using the online DAVID bioinformatics
resources, the terms and pathways giving statistically
significant values (p<t0.03) were chosen for further
analysis.

Q-PCR validation: All 12 different expressed miRNAs
were selected to validate the sequencing results by
g-PCR on the CFX9™ Real-time PCR Detection
System (Bio-Rad, CA, USA). For g-PCR experiments, three
biological replicates mentioned above were used and each
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RNA sample was analyzed in triplicate. RNA was
converted to cDNA by using SYBR® PrimeScript™ miRNA
RT-PCR kit (Takara, Dalian, China) and amplified
according to the manufacturer’s instructions. Porcine U6
snRNA, 55 rRNA and 185 rRNA were simultaneously
used as endogenous control genes. Relative expression
levels of objective miRNAs were calculated using the
AACt Method.

RESULTS AND DISCUSSION

Description of small RNA sequencing data: A total of
5.21 Million (M) and 861 M counts of sequenced
sequences were obtained from pig arterial and venous
blood, respectively. The >78% of counts met the accepted
criteria to be considered high-quality reads). The
length distribution of high-quality reads peaked at 22
nucleotides (nt) (arterial blood: 36%; venous blood: 31%)
followed by 21 and 23 nt (Fig. 1a) which is consistent with
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Fig. 1: The length and count distribution of small RNA
sequences, a) The length distribution and
frequency percentage of high-quality reads, b)
Distribution of read counts of known porcine
miRNAs in both libraries
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the known 21-23 nt range for porcine miRNAs (L ef al.,
2010). Hence, the
RNA-sequencing of arterial and venous blood were
deemed reliable for further analysis.

After collating and mapping sequences to the
miRBase 19.0 and pig reference genome, researchers
identified 250 and 267 known porcine miRNAs
corresponding to 277 and 294 precursor miRNAs
(pre-miRNAs) in arterial and venous blood, respectively.
To date, the miRBase 19.0 has documented 306 known
poreine miRNAs corresponding to 271 pre-miRNAs. This
llustrates that the arterial and venous blood encompass
almost the entire repertoire of previously known miRNAs
(arterial blood: 90.52%; venous blood: 96.08%) which
15 as expected when the blood participates m various
biochemistry pathways and material metabolism. These
results add to the growing evidence that miRNAs are not
only found in solid tissues but also in body fluids
such as blood which have been regarded as sources
of free circulating nucleic acids (Mitchell er al, 2008,
Takeshita et al., 2013; Tan et al., 2009).

data sets obtained from small

Highly expressed miRNAs implicated in
erythropoiesis and angiogenesis: The miRNAs showed
a broad range of expression levels in this study although,
only a few were highly abundant (Fig. 1b). The top 20
unique miRNAs with lngh expression levels accounted for
85.35 and 84.75% of the total counts m arterial and venous
blood, respectively. Among the top 20 most abundant

miRNAs, 17 were present in both libraries (Fig. 2a).
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Because of their very high abundance, the
17 miRNAs might be blood-specific and be of a
housekeeping cellular role. The miR-451 and miR-144
well-characterized and blood-specific miRNAs in human
and zebrafish are known to be essential for erythropoiesis
(Dare et al., 2008). Moreover, the miRNA-144/451 locus
enhances erythroid differentiation, modulates the rate of
erythrocyte maturation (Bruchova-Votavova et al,
2010; Pase et al, 2009), protects erythrocytes against
oxidant stress (Yu et al, 2010) and maintains erythroid
homeostasis (Rasmussen ef al., 2010). With the exception
of miRNA-144/451, miR-15b (Lawrie, 2010), miR-16
(Bruchova et al, 2007), muR-191 (1 et al., 2011,
Zhang et al, 2011) and miR-142 (Chen et al, 2004;
Sun ef al, 2010a, b) have all been implicated in
erythropoiesis. In human erythroid cells, miR-486
regulates v-globin expression and might contribute to
fetal Hemoglobin (HbF) modulation. MiR-92a, a member of
the miR-17-92 cluster, regulates vascular endothehal cell
hyperplasia ir vivo and 1s necessary for stabilizing blood
vessels (Fang and Davies, 201 2; Kuhnert and Kuo, 2010)
while the let-7 family are attractive targets fo modulating
anglogenesis (Ding et al., 2013; Kuehbacher et al., 2007).
Furthermore, four of the top 20 miRNAs accounting for
7.30 and 6.79% of all unique reads in arterial and
venous blood, respectively are from the let-7-family
(let-7a-5p, let-7f-5p, let-7g-5p and let-71-5p). This 1s
consistent with previous reports that show the
let-7-family are both highly and ubiquitously expressed
(Reddy et al., 2009; Roush and Slack, 2008) and might be

B KEGG pathway
Acute myeloid leukemia
VEGF signaling pathway
Chemokine signaling pathway
Progesterone-mediated oocyte maturation
Oocyte meiosis
T cell receptor signaling pathway
Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)
Hypertrophic Cardiomyopathy (HCM)
Endocytosis
Dilated cardiomyopathy
TGF-beta signaling pathway
Wnt signaling pathway
GnRH signaling pathway
Focal adhesion
MAPK signaling pathway

Pathways in cancer

6 8
-log,, (p-value)

19

Fig. 2: The top 20 miRN As and KEGG pathways enriched for miRNA targets; a) Plot of the top 20 miRNAs with highest
read counts versus their percentage total counts of high-quality reads; b) KEGG enrichment analysis using targets

of 17 most abundant miRNAs in both libraries
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the most important miRNA  regulators  of
fundamental biclogical processes (Abbott et al,
2005; Ason et al., 2006).

To better understand the function of the

most abundant miRNAs, the target genes of the
17 miRN As were predicted using PicTar (Krek ez al., 2005)
and TargetScan humean 6.2 databases (Lewis ef af., 2003),
the overlap of results from both databases was used
tocompose the final predicted targets. The predicted
target genes were analyzed using DAVID Software
(Huang et al, 2008) to determine whether they were
enriched n specific pathways. According to KEGG
pathway annotation, the enriched pathways, i.e., focal
adhesion, VEGF signaling, MAPK signaling, Wnt
signaling and TGF-beta signaling were previously
reported to be related to erythropoiesis (Geest and Coffer,
2009; Nostro et al, 2008, Vemula et al, 2010) and
angiogenesis (Goodwin and D'Amore, 2002; He et al.,
2006; Shen et al., 2005), highlighting the implication of
these most abundant miRNAs in the two processes.
The GnRH signaling, progesterone-mediated oocyte
maturation and oocyte meiosis pathways but not
spermatogenesis were also enriched (Fig. 2b) which 1s
comsistent with the gender characteristics of the
research objects (female piglets). This indicates that these
abundant miRNAs may participate in sexual maturation
(Tesfaye ef al., 2000).

Furthermore, endocytosis, T cell receptor signaling,
Fc¢ epsilon RI signaling and chemokine signaling
pathways were also enriched, conforming to the defense
function of the blood. The data thus highlighted the
pathways related to cancer and cardiovascular diseases,
indicating that abnormal miRNA expression in the blood
could accurately reflect a pathological state. Taken
together, the results and those of previous studies
support a relationship between a high abundance of
miRNAs and blood physiology.

Differentially expressed miRNAs between arterial and
venous blood: To further reveal the differences
between arterial and venous blood, the TDEG6 Program
(Romualdi et al., 2003) was used to test the significance of
differences in miRNA expression between arterial and
venous blood. A unique miRNA was considered to
be Differentially Expressed (DE) when it obtained
p<0.001 simultaneously following three statistical
tests (Audic-Claverie test, Fisher’s exact test and the
Chi-squared 2x2 test) with the Bonferroni correction

By applying this criterion, 57 miRNAs were identified
to be DE between arterial and venous blood but only five
(miR-18a, miR-21, miR-99%a, miR-144 and miR-7) (Fig. 3a)
and seven (miR-423, miR-16, miR-181a, miR-425, mR-151,
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miR-192 andmiR-142) (Fig. 3b) were significantly enriched
in venous and arterial blood, respectively meeting the
1.5 fold changes. All 12 DE miRNAs were selected and
validated using gq-PCR and the comparison between
q-PCR and sequencing results showed a significant
positive correlation (Person’s r = 0.881, p<1077), again
highlighting the reliability of the small RN A-sequencing
approach. Moreover, the three biological replicates
were highly correlated with a variable coefficient
<0.2, suggesting that the ¢-PCR approach has high
repeatability and reliability, making it possible to pool the
samples during the sequencing process. The enrichment
of miR-21 and miR-7 in venous blood probably resulted
from the low oxygen pressure in venous blood both
miRNAs are hypoxia-regulated and are up-regulated in
hypoxic cancer cells (Kulshreshtha ef al., 2008; Sun ef af .,
2010a, b). Of the seven miRNAs enriched in arterial blood,
three were shown to be involved in immune function and
inflammation. MiR-181a 1s mnplicated in T cell receptor
signaling by augmenting T cell receptor sensitivity
(Lietal, 2007, Wu et al., 2007) as well as establishing and
maintaining the fate of immune cells (Chen et al., 2004).
MiR-16 and miR-142 are involved in myeloid or lymphoid
differentiation and ectopic expression of miR-142 was
found to substantially alter lineage differentiation within
the T cell compartment (Chen et ad., 2004). Moreover, the
down-regulation of miR-16 during T cell apoptosis was
required for the increased proliferation of activated T cells
(Wuet al., 2007).

To further highlight the functional features of arterial
and venous blood, the target genes of the 12 DE miRNAs
were predicted and analyzed by DAVID. The GO
terms transcription regulation, intracellular signaling
cascade, macromolecule biosynthetic processes, cellular
biosynthetic process and phosphorus metabolic process
were enriched in both blood (Fig. 3¢ and d). Interestingly,
the regulation of cell death, regulation of programmed
cell death and regulation of apoptosis terms were only
enriched in venous blood (Fig. 3¢) which conforms to its
function in removing unwanted harmful and abnormal
cells from tissues. The target genes of venous blood-
enriched miRNAs were enriched in hypoxia-regulated
adipocytokine signaling, TGF-beta signaling and mTOR
signaling pathways, highlighting the lower oxygen level
in venous blood. Since, low oxygen is one of the reasons
for cells to undergo apoptosis, researchers speculate that
venous blood miRNAs play a role in apoptosis through
their involvement m the low oxygen response. However,
the target genes of arterial blood-enriched miRNAs were
strongly associated with immune response pathways
such as T cell receptor signaling, B cell receptor signaling,
MAPK signaling and msulin signaling (Fig. 3d).
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Fig. 3: Expression levels of 12 different expression miRNAs and the KEGG pathway and Gene Ontology Biological
Process (GO-BP) categories enriched in the target genes of the miRNAs; a) Q-PCR validation and small RINA-seq
results of the five venous blood-enriched miRNAs; b} seven arterial blood-enriched miRNAs; ¢) Q-PCR results
are expressed as meantSD. *p<0.05; **p<0.01. KEGG pathways (gray) and GO-BP (black) categories
enriched for the target genes of the five venous blood-enriched miRNAs and d) seven arterial blood-enriched

miRNAs
CONCLUSION

The annotations for the predicted targets indicated
that physiological and functional differences between
porcine arterial and venous blood were regulated by
miRNA regulators.
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