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INTRODUCTION positive Lyapunov exponent. Since hyperchaotic system

has the characteristics of high capacity, high security and

Chaotic systems are systems are nonlinear dynamical high efficiency, it has the potential of broad applications

systems which possess some special features, such as in nonlinear circuits, neural networks, lasers, secure

being extremely sensitive to small variations of initial communications, biological systems and so on. The

conditions, having bounded trajectories in the phase  hyperchaos phenomenon was first observed by
space, and so on. The sensitive nature of chaotic systems ~ Rossler®.

is commonly called as the butterfly effect!]. The chaos Synchronization of chaotic systems is a phenomenon
phenomenon was first observed in weather models by  that may occur when two or more chaotic oscillators are
Lorenz®?, coupled or when a chaotic oscillator drives another

Chaos is an interesting nonlinear phenomenon and chaotic oscillator. Because of the butterfly effect which
has been studied well in the last three decades. Chaos  causes the exponential divergence of the trajectories of
theory has wide applications in several fields like physical two identical chaotic systems started with nearly the
systemst®, chemical systems!, ecological systems®,  same initial conditions, synchronizing two chaotic
secure communications®®®, etc. Hyperchaotic system is  systems is seemingly a very challenging research
usually defined as a chaotic system having more than one problem.
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Fig. 1(a, b): The phase portrait of the hyperchaotic Lu system

In most of the chaos synchronization approaches, the
master-slave or drive-response formalism is used. If a
particular chaotic system is called the master or drive
system and another chaotic system is called the slave or
response system, then the idea of the chaos
synchronization is to use the output of the master system
to control the slave system so that the output of the slave
system tracks the output of the master system
asymptotically.

Since, the seminal work by Pecora and Carroll™®,
chaos synchronization problem has been studied
intensively and extensively in the chaos literature. In the
last two decades, various schemes have been successfully
applied for chaos synchronization such as OGY
method™Y, active control method™%*, adaptive control
method™®2%  time-delay feedback method!®,
backstepping design method?2%!, sampled-data feedback
synchronization method®, sliding mode control
method?3, etc.

So, far many types of synchronization phenomenon
have been presented such as complete synchronization®Y,
generalized synchronization®, anti-synchronization*,
hybrid synchronization®"*, projective synchronizationt®,
generalized projective synchronization® 2, etc.

Complete Synchronization (CS) is characterized by
the equality of state variables evolving in time while
Anti-Synchronization (AS) is characterized by the
disappearance of the sum of relevant state variables
evolving intime. In hybrid synchronization of two chaotic
systems, one part of the systems is completely
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synchronized and the other part is anti-synchronized, so
that, the Complete Synchronization (CS) and Anti-
Synchronization (AS) co-exist in the systems.

Projective Synchronization (PS) is characterized by
the fast that the master and slave systems could be
synchronized up to a scaling factor. In Generalized
Projective Synchronization (GPS), the responses of the
synchronized dynamical states synchronize up to a
constant scaling matrix a. It is easy to see that the
complete synchronization and anti-synchronization are
special cases of the generalized projective
synchronization where the scaling matrix o = I and o = -1,
respectively.

This study describes the adaptive controller design
for the GPS of the identical hyperchaotic LU systems
Chen et al.”¥, the identical hyperchaotic Cai systems
Wang and Cail*! and the non-identical hyperchaotic Lu
and hyperchaotic Cai systems. The adaptive GPS
synchronization results for the hyperchaotic systems
addressed in this paper have been established using the
Lyapunov stability theory™.

Systems description: In this study, we describe the
hyperchaotic systems addressed in this study. The
hyperchaotic Lu system™! is described by the 4D Lu
dynamics:

X, = a(X,X,)+X,
X, = CX,-X; X4 )

X,y = -bX,+X,X,
X, = OX,+X,X,4
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Fig. 2(a, b): The Phase Portrait of the Hyperchaotic Cai System

where X, X,, X5, X, are the states and a, b, c, d are
constant, positive parameters of the system.The system
Eqg. 1 exhibits a hyperchaotic attractor when the system
parameter values are chosen as:

a=36,b=31c20 d=13

The phase portrait of the hyperchaotic Lu system Eq.
1isdepicted in Fig. 1. The hyperchaotic Cai system ([45],
2009) is described by the 4D Cai dynamics:

X = P(X,X,)
Xy = QXXX X5 +X,,

@)

-SX3+X?

X, = -€X,

where, X;, X,, X3, X, are the states and p, q, r, S, € are
constant, positive parameters of the system. The system
Eq. 2 exhibits a hyperchaotic attractor when the system
parameter values are chosen as:

pP=2750=3r=1935=29¢=33

The phase portrait of the hyperchaotic Cai
system Eq. 2 is depicted in Fig. 2.

ADAPTIVE GENERALIZED PROJECTIVE
SYNCHRONIZATION OF IDENTICAL
HYPERCHAOTIC LU SYSTEMS

Theoretical results: In this study, we deploy adaptive
control to derive results for the Generalized Projective
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Synchronization (GPS) of the identical hyperchaotic Lu
systems (2006) when the system parameters are unknown.
Thus, the master system is described by the hyperchaotic
Lu dynamics:

X, = a(xz'X1)+X4
X, = CX,=X; Xy
X, = -bX,+X X,

X, = dX, XX,

®

where, X, X,, X3, X, are the states and a, b, c, d are
unknown parameters of the system. Also, the slave system
is described by the controlled hyperchaotic Lu dynamics
We define the parameter estimation errors as:

y,=a (yz 'y1) Yy, U
Y, =CY,Y.Ystu,

Vs = -by;+y,y,+u,
Vo = dy, yystu,

(4)

where y,, ¥,, Y3, Y, are the states and u,, u,, u,, u, are the

adaptive controls to be desigend. The GPS
synchronization errors are defined as:
e =y,-ax,(i=1 23 4) (5)

where, the scales a,, a,, oy, 0, are real numbers. The error
dynamics is obtained as:
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€, = a(y,ouX, 8, ) Y mouX, U,

€, = C&;-Y Y3t X X HU,

&, = -by,+y,Y,-0,X, X, U, ©)
e, = de,+y,y,-a, X X;*U,
We consider the adaptive controller defined by:
u, = -a(Y,-0,X,-€, ) -y, to,X, K€,
U, = Ce,-Y,Y,-0,X,X;-K,e, @

Us = -Be3-y1y2 +ouX X, K8y
u, = -de,-y,y;+a,X,X;K,e,
where, 4, b, ¢, d are estimates of the parameters a, b, c, d,

respectively. Substituting Eq. 6 into Eg. 6, we obtain the
closed-loop error dynamics:

e, = (a-6)(y,-ax,-e )-kee,
e, =(c-C)e,kpe,
é, = -(b-f))e,'3-k3e3 (8)

é, = (d-a)e‘lk“e4

We define the parameter estimation errors as:

e =c-C 9)

Using Eq. 9, the error dynamics Eq. 8 is simplified as:

& = e, (Y, ouX,0e,) ke
é, =ee,-k,e,
é, = -e.e,-kse,
é, =ese, ke,

(10)

For the derivation of the update law for adjusting the
estimates of parameters, the Lyapunov method is used.
We consider the quadratic Lyapunov function defined by:

1
V= E(ef +e}+e] e} +el +e) el +ef ) (11)

which is positive definite on R®. We note that:

¢, =-a
e, = -b
_ 12)
6 =-¢
e, =-d

Differentiating Eq. 11 along the trajectories of the
system Eq. 12 and using Eq. 12, we find that:

V = -ke?-k,e2-k,e2-k,el+

e, [el(yz-qlxz-el)-é}

e, {-ei- b }ec [-ei-é} +e, [-ei- a}

In view of Eq. 13, the estimated parameters are updated
by the following law:

(13)

d =g, (Y, 0nx,e;) +Ke,

b= -e2+kqe,
_ (14)
C=el+ke

c

d = e2+k,e,
where the gains k. 4 are positive constants.

Theorem 1: The adaptive control law (Eg. 7) achieves
General Projective Synchronization (GPS) between the
identical hyperchaotic Lu systems Eq. 3 and 4 where the
parameter update law is given by Eq. 14 and the gains k;,
(i=1,2, ..., 8) are positive constants. The GPS errors e;,
(i=1, 2, 3, 4) and the parameter estimation errors e,, e,,
e., €, converge exponentially to zero as t-< for all initial
conditions.

Proof: Upon substituting the parameter update law Eg. 13
into the Eq. 14, we obtain the derivative of the quadratic
Lyapunov function V as:

V= 'k1e12 'kzeg 'kseg 'k4ef 'kseg 'kse§ 'k7e§ 'kses (15)

which is a negative definite function on R®. Hence, by
Lyapunov stability theory™, it follows that the GPS
errors e,~0, e,~0, e,-0, e,~0, exponentially as t-- and
the parameter estimator errors e,~0, e,~0, e.~0, e,~0,
exponentially as t-< for all initial conditions.

Numerical results: For the numerical simulations, the
fourth order Runge-Kutta method is used to solve the
two systems of differential Eq. 3 and 4 with the adaptive
controller Eg. 7. The parameter estimates of the
identical systems Eq. 3 and 4 are taken, so that, the
hyperchaotic Lu systems exhibit hyperchaotic strange
attractor, i.e.,

a=36,b=3c¢c=20,d=13

We take the state feedback gains as:
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Fig. 3(a-d): GPS of the identical hyperchaotic Lu systems

ki=4fori=12..8

The initial values of the parameter estimates are
chosen as:

4(0)=7,b(0)=8,¢(0)=5,d(0) =17

The initial values of the master system Eq. 3 are
chosen as:

X, (0) =2, x,(0) =-23,x,(0) =7, x,(0) =12

The initial values of the slave system Eq. 4 are
chosen as:

\ (0) =15y, (0) =-5Y, (0) =-12,y, (O) =2
The GPS scales «; are chosen as:

a,(0)=18, a,=-06, 0, =-24,a, =15

Figure 3 shows the GPS between the identical
hyperchaotic Lu systems Eq. 3 and 4. Figure 4 shows the
time-history of the GPS errors e,, e,, e,, €,. Figure 5
shows that the parameter estimates &, b, ¢, d converge
to the chosen values of the system parameters a, b, c, d,
respectively as t-o. Figure 6 shows the time-history of the
parameter estimation errors e,, e, €, €.
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ADAPTIVE GENERALIZED PROJECTIVE
SYNCHRONIZATION OF IDENTICAL
HYPERCHAOTIC CAI SYSTEMS

Theoretical results: In this study, we deploy adaptive
control to derive results for the Generalized Projective
Synchronization (GPS) of the identical hyperchaotic Cai
systems (2009) when the system parameters are unknown.
Thus, the master system is described by the hyperchaotic
Cai dynamics:

X, = p(Xz'Xl)
)j(z = qx1+rx22-x1x3+x4 (16)
X = -SXg+X’

X, =-€X,

where, X, X,, X;, X, are the states and p, g, r, s, € are
unknown parameters of the system. Also, the slave
system is described by the controlled hyperchaotic Cai
dynamics:

y1 = p(yz'yl)
Y, = QY. Y, Y,Ys Y, tu,
ys = 'SY3+y§ +U,

Y, =-gy,*u,

(17)

where, y,, ¥,, Vs, Y, are the states and u,, u,, us, u, are the
adaptive controls to be designed. The GPS
synchronization errors are defined as:
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& =YX, (i=1234) (18) &, = (p-P) (Y, oux,-e;)-K.e,
&, = (9-0) (Yr-ox, ) +(r-F)e,kee, 21
where the scales o,, o,, o, o, are real numbers. The error 6, = -(s8)e,kqe, (21)
dynamics is obtained as: . .
y e, =-(e-€)(y,-a,x,)-k,e,
€ = p(yz'alxz'el)+u1 . . .
. We define the parameter estimation errors as
€, = q(y1'ale)+rez'y1y3+
o,X X,y -0, X, U A
) 271 32y4 22 4 2 (19) ep = p-p
83 = -S€31Y;-03X5U, e, = g-G
. q
&, =-e(y,-oXx,)+u, e =rf (22)
. . . e, =58
We consider the adaptive controller defined by: o —ei
u, = 'ﬁ(yz'a1xz'e1)+kiel ] . o N
U, = A(Y,-0,%, ) +e, 4y, Using Eqg. 22, the error dynamics Eq. 21 is simplified as
0, X, X357y, -0, X, K8, (20)

P 2
Uy =S5y, +orgX;-Kyes

U, = 8(yy-oX, ) ke,

estimates of the parameters

p, 9, r, S, & respectively. Substituting Eg. 19
into Eg. 20, we obtain the closed-loop error
dynamics:
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& = e, (Y,maX,-e,)-Kie,

&, =y (V10X ) +ee,-k,8,

€, = -8,8;-K8, (23)
g =-€, (y1'a4x1)'k4e4
For the derivation of the update law for

adjusting the estimates of parameters, the Lyapunov
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method is used. We consider the quadratic Lyapunov
function defined by:

V- %[eﬁeﬁ selvel selvel +e vl 4et (24)
which is positive definite on R°. We note that:
&, =-p
e, = -
e =-f (25)
6, =-8
e, =-¢

Differentiating Eq. 23 along the trajectories of the
system Eq. 23 and using Eq. 25, we find that:

V = k,e?-k,e2-ke2-k e+
& |:el (yz _alxz-el)- ﬁ:""
& [ez (y1'a2X1)' [3:| *e, |:e§'F:‘+

& |:'e§ '§:‘ *e, |:'e4 (Yi-ox,)- é}

(26)

In view of Eq. 26, the estimated parameters are
updated by the following law:

6 € (yl-ale-el)+k5ep

a =&, (Y, 0%, ) +kqe,

F=el+kpe, (27)

a 2
S = -e5+Kge,

€

-€, (y1'0‘4X1) +Koe,

Theorem 2: The adaptive control law Eq. 20 achieves
General Projective Synchronization (GPS) between the
identical hyperchaotic Cai systems Eq. 16 and 17 where
the parameter update law is given by Eq. 27 and the gains
ki (i=1,2, ..., 9) are positive constants. The GPS errors
e, (i=1, 2, 3, 4) and the parameter estimation errors e,,
e, €, €, €, converge exponentially to zero as t- for all
initial conditions.

Proof: Upon substituting the parameter update law Eq. 26
into the Eq. 27, we obtain the derivative of the quadratic
Lyapunov function V as:

V = kel -k,e5-kqel-k g5 -koel-k el -k e?-kqel ke

(28)
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which is a negative definite function on R®. Hence, by
Lyapunov stability theory™, it follows that the GPS
errorse,~0, e,~0, e;-0, e,~0 exponentially ast -~ and the
parameter estimator errors e,-0, e,~0, e~0, -~0, e.~0,
exponentially as t-« for all initial conditions.

Numerical results: For the numerical simulations, the
fourth order runge-kutta method is used to solve the two
systems of differential Eq. 16 and 17 with the adaptive
controller Eq. 20. The parameter estimates of the
identical hyperchaotic Cai systems Eq. 16 and 17 are
taken so that the systems exhibit hyperchaotic strange
attractors, i.e:

p=27550=3r=1935=29¢=33
We take the state feedback gains as:

k,=4fori=12 .. 9

The initial values of the parameter estimates are
chosen as:

P(0) = 2,G(0) =8, 7(0) = 5,3(0) =13, §(0) = 24

The initial values of the master system Eqg. 16 are chosen
as:

X, (0) =4, x,(0) =11, x,(0) =-3,x,(0) =-10

The initial values of the slave system Eq. 17 are chosen
as:

y;(0) =-6, y,(0) =-22, y;(0) =24, y,(0) =14
The GPS scales ai are chosen as
o, =-19, a, =-15, 0, =23, a,=-17

Figure 7 shows the GPS between the identical
hyperchaotic Cai systems Eq. 16 and 17. Figure 8 shows
the time-history of the GPS errors e,, e,, e;, e,. Figure 9
to the chosen values of the system parameters p, g,
r, s, & respectively as t-«. Figure 10 shows the
time-history of the parameter estimation errors e,, €, €,
g, €,.

ADAPTIVE GENERALIZED PROJECTIVE
SYNCHRONIZATION OF NON-IDENTICAL
HYPERCHAOTIC LU AND HYPERCHAOTIC
CAI SYSTEMS

Theoretical results: In this study, we deploy
adaptive control to derive results for the Generalized
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Lu system (2006) and hyperchaotic  described by the hyperchaotic Lu dynamics:
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hyperchaotic.

Projective
Cai system (2009), when the system parameters

are unknown. Thus, the master system is
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X, = a(xz'X1)+X4
X, = CX,X; Xy
X, = -bX,+X,X,

X, = dX, XX,

(29)

where, X;, X,, X;, X, are the states and a, b, c, d are
unknown parameters of the system. Also, the slave system
is described by the controlled hyperchaotic Cai dynamics:

A p(yz'y1)+u1

Yo =Y, H1Y,-Y, Y5y, Hu,
s 'SY3+yg *Uy

Y, = -8y, tu,

(30)

wherey,, ¥,, ¥, Y, arethe states, p, q,r, s, € are unknown
parameters of the system and u,, u,, us, u, are the adaptive
controls to be designed. The GPS synchronization errors
are defined as:

e =YX, (i=1234) (31)
where the scales a,, a,, oy, o, are real numbers. The error
dynamics is obtained as:

& = p(Y,¥y) o [a(x,%,) +x, ] +u,

€&, =y, +1Y,-Y,Ys1Y,-, [sz 'Xlxs] *U,

32
&; = —sy3+y§—a3 ['bX3+X1X2]+U3 ( )
e, =-gy;-a, [dX4+X1X3]+U4
We consider the adaptive controller defined by:
u, = 'ﬁ(Y2'Y1)'0‘1 [é(xz—x1)+x4]—kle1
U, = -y, — Ty, +Y,Ys-Y, +a, [6X2'X1X3] ke,
(33)

-~ 2 o
U; = Sy;-Ys+o, ['bX3+X1X2 J K,

u, =gy, +a, [dx4+xlx3}k4e4

a, b, ¢, d p, r, s, & respectively. Substituting
Eqg. 32 into Eq. 33 we obtain the closed-loop error
dynamics:

€ = ( 'ﬁ)(nyl)'(’*l (a-é)(xz-xl)-klel

(34)

We define the parameter estimation errors as:
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e, =a-4,e, =b-be =cC
e, =d-d,e, = p-H, e, = q-q (35)
e, =r-f, e =55 e =gt

Using Eq. 35, the error dynamics Eq. 34 is simplified as:

é = €, (yz'y1)'0~1€a (Xz'xl) ke,
&, = .Y, +€.Y,-0,8.X,-K,8,

. (36)
€, = -8y, ta,e, X,-Kqe,
e, =-ey,-o,e.X,-k,e,

For the derivation of the update law for

adjusting the estimates of parameters, the Lyapunov
method is used. We consider the quadratic Lyapunov
function defined by:

1 2 2 2 2 2 2 2 2 2 2 2 2 2
V= E[el +e]+e]+e] +el+e) +el +e) +el+el +e’ +e’ +eﬁ] (37)

which is positive definite on R*. We note that:

e, =-3,6 =-b, é =-C
R TP 38
&, =-d, &, =-p, ¢ =-q (38)
g, =-f,6 =-5¢ =-&

Differentiating Eqg. 36 along the trajectories of the
system Eq. 37 and using Eq. 38, we find that:

e, [-oc1e1(x2-x1)-é}+eb {-%eaxs-ﬁ }
ec[-azezxz-é}ed{-a4e4x4-a}+ep[el(yz-yl)-f)} (39)
& [ezyl'(ﬂ +e, [eZYZ' f:| +€, ['93Y3'§:‘ +e, |:'e4y1' §:|

In view of Eq. 39, the estimated parameters are
updated by the following law:

(40)

f= ezYz"'kuer
§= 'e3Y3+k1zes

€= -8y, K€

3
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where the gains k;, (i =5, ..., 13) are positive constants.

Theorem 3: The adaptive control law Eq. 33 achieves
General Projective Synchronization (GPS) between the
non-identical hyperchaotic Ll system Eq. 29 and the
hyperchaotic Cai system Eq. 30 where the parameter
update law is given by Eqg. 40) and the gains k;, (i = 1, 2,
..., 13) are positive constants. The GPS errors g, (i=1, 2,
3, 4) and the parameter estimation errors e, e,, &, €, €,
ey €. €, &, converge exponentially to zero as t- for all
initial conditions.

Proof: Upon substituting the parameter update law Eq. 40
into the Eg. 39 we obtain the derivative of the quadratic
Lyapunov function V as:

V = -k,e2-k,e2-k,e2-k,e2-k.e2 -k et -k, e-

kse§'kge,zz'kmeé'knerz'k1ze§'k1ae§ (41)
which is negative definite function on R™. Hence, by
Lyapunov stability theory Eq. 40 it follows that the GPS
errorse;-0, e,~0,e,-0, e,~0 exponentially as t-- and the
parameter estimator errors e,~0, e,~0, e.~0, e,~0, e,~0,
e,~0, &0, e,~0, e,~0, exponentially as t- for all initial
conditions (Fig. 11).

Numerical results: For the numerical simulations, the
fourth order Runge- Kutta method is used to solve
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the two systems of differential Eq. 29 and 30 with the
adaptive controller Eq. 33. The parameter estimates of the
non-identical hyperchaotic Lu system Eq. 29 and the
hyperchaotic Cai system Eq. 30 are chosen, so that, the
systems exhibit 3-scroll chaotic attractors, i.e:

a=36b=3c=20,d=13 p=275
g=3r=193s5=29¢=33

We take the state feedback gains as:
ki=4fori=12,..13

The initial values of the parameter estimates are chosen
as:

The initial values of the master system Eq. 16 are chosen
as (Fig. 12 and 13):

x,(0) =10, x,(0) = -4, x,(0) =-17,x,(0) =6

The initial values of the slave system Eq. 17 are chosen
as:
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Fig. 12: Time history of the GPS errors
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Fig. 13: Time history of the parameter estimates

Figure 11 shows the GPS between the non-identical
hyperchaotic Lu and hyperchaotic Cai systems.
Figure 12 shows the time-history of the GPSerrorse,,
e,, &, €,. Figure 13 shows that the parameter estimates
4b,¢,d, converge to the chosen values of the

Y1 (0) =3y, (0) =4y, (0) =8y, (O) =-20

The GPS scales o, are chosen as:

o, =05 0,=12 a,=14, a,=-08
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Fig. 14: Time history of the parameter estimation errors e,, e,, €, €,

30

- p=275 |
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system parameters a, b, c, d, respectively as t-e~.  chosen values of the system parametersp, g, r, S, €
Figure 14 shows the time-history of the parameter  respectively ast-e. Figure 16 shows the time-history
estimation errors e,, e, €, €, Figure 15 shows that  of the parameter estimation errors e, €, €, €,

the parameter estimates P, G, 7 S & converge to the e,
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Fig. 16: Time history of the parameter estimation errors e,, e, €, €, €,

CONCLUSION

In this study, we have designed adaptive controllers
for achieving Generalized Projective Synchronization
(GPS) of hyperchaotic systems, viz. the identical
hyperchaotic Lu systems (2006), the identical
hyperchaotic Cai systems (2009) and the non-identical
hyperchaotic Lu and Cai systems when the system
parameters are unknown. The adaptive GPS
synchronization results for the hyperchaotic systems
addressed in this paper have been proved using the
Lyapunov stability theory. Since the Lyapunov exponents
are not required for these calculations, the proposed
adaptive control method is very effective and convenient
for the GPS of hyperchaotic systems. Numerical
simulations have been presented to validate and
demonstrate the effectiveness of the GPS synchronization
results derived in this paper for the hyperchaotic systems.
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