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Abstract: The wavelet transform is the powerful tool
used in the field of signal processing. Many works have
been contributed to wavelet transform in the last two
decades and in precise in this decade, the researchers have
thrown a number of works in the field of signal processing
based on wavelet transform. This paper extends the idea
of Discrete Wavelet Transform (DWT) in knock signal
detection which is experienced in SI engine. Due to
abnormal combustion, the engine produces a pinging
noise which is termed as Knock signal. The knock signal
should be identified earlier since the frequent occurrence
of the knock signal would damage the engine. In this
work the statistical parameter of a knock signal such as
kurtosis, skewness and crest factor is determined by
employing the DWT. The experimental result shows that
the proposed system dominates the results produced by
conventional transform.

INTRODUCTION

In a spark-ignition engine, knock occurs when a
portion of the air-fuel mixture ahead of the spark-initiated
flame front spontaneously combusts (Borg et al., 2005).
This causes very high local pressures which propagate in
the combustion chamber, hence setting the entire engine
block in vibration. The pressure wave is formed as a result
of increase in pressure and energy released during
vibration. The imperative characteristics of both
vibrations occur during the knocking and oscillation of
pressure in the cylinder is that their resonant frequency
will decrease with time. This vital feature will contribute
to the detection of knock as illustrated by Zhang and
Tomota (2000). The crisis related to knock like pollution
is overcome by advance detection of knock (Park and
Yang, 2004). The prevention measure for detonation is
shown by Stankovic and Bohme (1999)  as we can use

fuel with high octane numbers, reduction of pressure and
temperature in the cylinder and controlling the time of
ignition. The Engine parameters that affect the occurrence
of knock are.

Compression ratio: Auto-ignition is made possible with
high compression ratio. If the mixture of fuel-air is
compressed to high pressure and temperature, ignition
will be initiated automatically even before the spark
ignition.

Engine speed: Auto-ignition takes more time for the
engine with low speed. In contrast to this, the loss of heat
is very less if the speed of engine is high and in turn this
would increase the temperature of the gas. Finally the gas
with high temperature will advance to Auto-ignition.

The   structural   vibration   signal   is   the   basis  for
the  planned  detection  scheme  and  this  vibration signal
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can  be  detected  and  measured  with  accelerometer 
(Molinaro  et al., 1992). The knock sensor responds to the
acceleration of the engine block at its mounting location.
The  response  from  the  sensor  is  dominated  by  low
SNR. The low SNR is experienced as result of masking
the knock signal with various other vibrations (Borg et al.,
2005). The  aim  of  this  paper  is  to  detect  the  knock
signal by incorporating the Discrete Wavelet Transform
(DWT). The real-time realization of the proposed system
is made possible by fixing the accelerometer in the car
engine.

The feature parameter of the detected vibration signal
is analyzed by using the wavelet transform. The wavelet
transform made the analysis easy by forming the segments
of long and complicated signal which is detected by the
accelerometer. The proposed method outperforms the
results achieved by conventional transform and the
practical application shows that it could contribute to the
future engine knock signal detection.

MATERIALS AND METHODS

Mathematical analysis of dft, stft and wavelet
transform
Discrete fourier transform: The Discrete Fourier
Transform (DFT) operates on periodic sampled time
domain signal and it correlates the input time domain
samples with its basis function (sine and cosine waves).
The fundamental analysis equation for obtaining the
N-point DFT is as follows:
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The correlation of a sine/cosine wave of any
frequency other than that of the basis function produces a
zero  value  for  both  ReX(1)  and  ImX(1)  as  shown  in
Fig. 1. A similar procedure is followed when using the
inverse DFT (IDFT) to reconstruct. The disadvantage in
DFT is that it assumes signal is periodic. Therefore, when
measured signal is non-periodic, spectral leakage occurs.
Further, DFT  also reveals only  frequency  information 
and  it  does  not  tell us, at which time  these  frequency 
components  exist.

Short time fourier transform: All the real time signals
like vibration signal from any rotating machinery or
engine are Non-stationary signal and therefore
time-frequency analysis method is needed to analyze such
kind of signals. Then multiply the signal with a window
function whose width is equal to the small segment of the
signal where it is stationary and then Fourier Transform
is taken for the product. The short time Fourier transform
of a function x(t) is given by:

(2)     * - j2 ft
XSTFT t, f x t * t, t ' *e dt    

The advantage of STFT over DFT is that along with
frequency components, time localization is also known.
But the disadvantage is fixed window size.
Time/Frequency localization depends on window size.
Once a particular window size is chosen, it will be the
same for all frequencies. Narrow window leads to poor
frequency resolution and Wide window gives poor time
resolution (Polikar, 2002).

Wavelet transform: The wavelet transform has proven to
be  very  effective  in  analyzing a  wide  class  of  signals

Fig. 1: Correlation of time samples with basis function using DFT
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Fig. 2: Sinusoid basis function in DFT and wavelet basis
Function in WT

that appear in practical applications but are not well
matched by the Fourier basis (Fiolka, 2006).  WT
overcomes the preset resolution problem of the STFT by
using a variable length window. Narrow window could be
used at high frequencies for better time resolution and
wider windows at low frequencies for better frequency
resolution. Wavelets are functions that “wave” above and
below the x-axis, having varying frequency, limited
duration and an average value of zero. This is in contrast
to sinusoids, used by fourier transform which have infinite
energy as shown in Fig. 2. In wavelet transforms,
Wavelets are used as basis function, unlike the sinusoids
which are the basis function in DFT.

Continues wavelet transform: If  x(t) is a given
function, then continuous wavelet transform of the
function is expressed as:

(3)  �    , sX , a

1
CWT X t * t dt

a
  

Where:
τ6 = Translational factor (time)
a6 = Scale factor

When a>1, the signal is dilated; when a<1, the signal is
compressed. The complete CWT is obtained for all values
of the scaling parameter. When large scale is selected, the
resulting ψτ, s(t) become low frequency wavelet functions
and spread out in time and vice versa (Albarbar, 2013). To
detect localized characteristic frequency, the magnitude of
wavelet transform at different dilations varies periodically
at a rate of the characteristic frequency of a certain defect. 
At low frequency, high scale is chosen which gives a
non-detailed global view of the acquired knock signal. For
higher frequencies, low scale is chosen which gives a
detailed view of the signal. At lower scale, the wavelet is
compressed and is used to detect the rapidly changing
details. The main disadvantages of the CWT are heavy
redundancy and computational complexity (Fiolka, 2006)
as far as the reconstruction of the signal is concerned.
This leads to the discrete wavelet Transform where the
scaling factor ‘a’ and the Translational factor ‘b’ are
sampled.

Discrete wavelet transform: The Discrete Wavelet
Transform (DWT) tracks the changes in frequency
content of a signal as a function of time. DWT is a
convolution of the input data sequence with a set of
functions generated by the mother wavelet. DWT of the
signal x(t) is defined as:

(4)     N S-1/2 *
X S Sn 1

n-i T
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Where:
N6 = No. of samples
TS6 = Sampling period

(5)       
x -

x n * h n x k *h n-k


 

The filters of different cutoff frequencies are used to
analyze the signal at different scale. The signal is passed
through a series of high pass filter to analyze the high
frequencies and low pass filters to analyze the low
frequencies. Therefore, Eq. 5 becomes:

(6)     
k -

Y n h k x 2n-k


 
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The first level of decomposition can be
mathematically expressed as:

(7)     high n
Y k x n g 2k-n

(8)     low n
Y k x n h 2k-n

Both the filter is related by:

(9)     n
g L-1-n -1 h n 

(10)     high n
Y k x n g -n+2k 

(11)     low n
Y k x n h -n+2k 

The reconstruction of the original signal can be
derived from:

(12)           high low
kx-

x n y k g -n+2k + y k h -n+2k



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The Fig. 3 illustrates the decomposition of the
original signal at each level of filtering and sub-sampling.
In Fig. 3, g[n] is the low-pass approximation coefficient;
h[n] is the high-pass detail coefficient. In detail
coefficient,  the  time  resolution is good. In approximated
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Fig. 3: Three level decomposition using DWT

coefficient, the frequency resolution is good. The
decimation process is undergone for getting the time
resolution  signals.  The  larger  the  dilation  scale  goes,
the more multiplications and additions are needed
(Kikuchi et al., 1993).

The DWT is very suitable for knock detection
systems, since the knock signal can be observed in
discrete scales (Borg et al., 2006). Also the acquired
knock is a transient phenomenon consisting of several
resonances  with  decreasing  resonance  frequencies
(Matz  and  Hlawatsch,  1998).  As  shown  in the Fig. 3.
The DWT  is  computed  by  successive  low  pass  and 
high  pass  filtering   of   the   discrete   time-domain 
signal.

Signal statistics: Detonation can be examined by
statistical parameters such as crest factor, kurtosis,
skewness, RMS value of the signal. The crest factor
corresponds to the ratio between the crest value
(maximum absolute value reached by the representative
function of the signal during the considered period of
time) and the R.M.S. value (efficient value) of the signal
and can be expressed as:

Fig. 4: Three level decomposition using DWT

Crest value
Crest factor

RMS value


High crest factor indicates a low signal to noise ratio.
The crest factor and the energy depend inversely on each
other (i.e., if crest factor is large then the signal contains
less energy and vice versa). The time-domain signal
which contains the vibratory amplitude can be determined
by the kurtosis and in addition the impulsiveness of the
signal can be detected. The kurtosis can be determined by
second and fourth order statistic moment (i.e., M2 and
M4) and signal amplitude x(n) for n sample. The
expression is as follows:
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In the context of machine fault detection, a high
kurtosis value indicates the presence of faults in a rotating
mechanical system. To evaluate the symmetry and the
third order moment we can compute the Skewness. The
probability density function with longer right side and left
side is indicated by positive and negative skewness value,
respectively.

Experimental setup: An acknowledged procedure in
today’s automobile is to mount acceleration sensors on the
engine body to measure sound in the form of a distorted
version of pressure signal inside the cylinder
(Carstens-Behrens and Bohme, 2001). Keeping this in
mind a simple experimental setup which consists of the
spark ignition engine, Arduino kit, laptop with LabVIEW
software and its interface with the Arduino as shown in
the Fig. 4 have been developed. LabVIEW interface for
Arduino (LIFA) Software interfaces the LabVIEW
Software with Arduino kit. Detonation is actually an
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acoustic vibration signal from an engine body in
commercial vehicles (Jonathan et al., 2006). Therefore an
accelerometer is attached to the engine which measures
the vibration signals. Arduino converts vibration signal
into binary waveform which is processed by a program
developed by means of LabVIEW Software. The
sampling frequency was set at 1024 kHz.

RESULTS AND DISCUSSION

The result of the proposed system is evaluated and
compared   with   the   results   based   on   conventional

transformations. In order to evaluate the outcome of the
proposed system, we have calculated the vital
characteristics of knock signal such as skewness, kurtosis
and crest factor. The hardware setup is made as shown in
the experimental setup. The knock signal from the engine
is detected by the accelerator and it is bypassed to
Software (LabVIEW) through the Arduino and the
detected signal is shown in Fig. 5.

To make the signal analysis, complex-free, precise
and accurate, we, have to determine the transformed
signal and the FFT transform of the detected knock signal
is  shown in Fig. 6-10. In  our  proposed  system, Discrete

Fig. 5: Detected signal

Fig. 6: FFT output of the detected signal
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Fig. 7(a, b): Approximation and detailed coefficients

Fig. 8: Computed kurtosis Fig. 9: Computed skewness
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Fig. 10: Computed crest factor

wavelet transform is used to compute the timing and
frequency information of the knock signal. The
determined approximation coefficients (i.e., A1, A2 and
A3) and detailed coefficients (i.e., D1, D2 and D3) are
shown in Fig. 7.  Figure 8 shows the determined kurtosis
for the detected knock signal. In similar, the skewness of
the knock signal is shown in Fig. 9. Finally, both RMS
value and Crest value is used to determine the Crest factor
and the result is shown in Fig. 10.

CONCLUSION

This study contributes to the detection and analysis of
the knock signal in the engine. The knock signal is
captured by the accelerometerand forwarded to LabVIEW
through Arduino board for analysis based on the statistical
parameter such as skewness, kurtosis and crest factor.
From the experimental result, we can conclude that the
proposed system of analyzing the statistical parameter of
the vibration signal from the SI engine based on Discrete
Wavelet Transform (DWT) outperforms all the results
based on the conventional transforms. As of now, we have
employed the DWT for the analysis and in the future the
work can be extended by deploying the wavelet packets
for analyzing the statistical parameters.
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