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Abstract: All data collected by the sensor nodes 1s sent to sink nodes mn the Wireless Sensors Networks
(WSNs). Therefore, location and the optimal number of the sink nodes has a significant impact according to
the various complexity factors, it can be addressed with optimization algorithims as an optimization problem. In
this study, a Multi-Objective Modified Flower Algorithm (MOMFPA) pollination has proposed to deal with the
problem of multiple sink nodes m WSN in order to attain the mimimum number of multiple sink nodes with
reduced energy consumption to extend the lifetime of the WSN. To realize this, a fitness function has been
formulated to guarantee the balance between the sink nodes and energy consumption. Moreover, to assess
the performance of the proposed algorithm introduced here, it is simulated in different network sizes ranging
from 100-5000 nodes and the results proved that the proposed algorithm overcomes the two well-known
algorithms famous in the optimization domain such as Multi-Objective Differential Evolution (MODE) and
Multi-Objective Particle Swarm Optimization (MOPSO) in terms of the number of multiple sink nodes as well as
the low energy consumption. Eventually, the quantitative and qualitative results revealed that the proposed
MOMEFPA significantly was able to find the optimal Pareto Front (PF) and provide a superior quality of
solutions.

Key words: Wireless Sensor Networks, sink node, modified flower pollination algorithm, multi-objective

optimization, swarm intelligence, energy consumption, Pareto front

INTRODUCTION

Wireless Sensors Networls (WSNs) is regarded as
one of the most interesting themes in nformation
technology field and used in various fields and real-world
applications. Often, WSNs consists of many sensor
nodes with a limited power source that 1s implemented in
a given area and a single data collection certer which
called sink node. Each node can collect mformation within
the sensor range and then transmitted it to neighboring
nodes. Sensor nodes convert significant events detected
by a sink node by collaborating with other nodes. The
mformation gathered from all nodes 1s ultimately sent to
the base station which is called sink node (Chen and i,
2013).

One of the most promising trends research i WSNs
exploits the movement of certain components of the
network (Yick et al., 2008). Tf sinks nodes are deployed
statically, nearby sensors will spend much more energy
than sensors away from wells. When these nodes run out
of batteries, the sink nodes cammot receive other
packages. Transferring the network components if sink
nodes can better balance energy depletion between

nodes and extend network lifetime (Basagm et of.,
2011). Also, allocating the sink node address to the
auto-configuration topology creates another problem that
affects network performance i terms of power, delay and
runtime. Therefore, the sink node must be accurately
positioned so that the other nodes do not use extra power
to provide their data and the network lifetime mcreases
(Hacioglu and Sesly, 2016).

Consequently, one of the big challenges in WSNs 15
the choice of the best location of sink nodes to receive all
messages from sensor nodes without consuming their
energies quickly 13 regarded as a Multi-Objective
Optimization (MOQO) problem. In the multi-objective
problem, there is no single optimal solution but rather a
represent the optimal
solutions. These solutions are optimal when there are no

set of alternative solutions
other solutions m the search space are superior to them
when all objectives are considered; these solutions are
known as Pareto Optimal (PO) solutions (Marler and
Arora, 2004). This problem can be handled by combming
all multiple objectives into one single objective with a set
of weights. Thus, the assigning of the sink node’s optimal
location is a critical task to guarantee both of increasing
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network lifetime as well as energy consumption. In this
study, we focus on the optimal location of the multiple
sink nodes m WSNs.

Even though, the sink nede location 1s regarded as a
challenging problem in WSNs, the literature has been
dealt with sink node location rarely compared to other
areas like routing protocols and security, etc. in WSNs.
Several studies such as Fei ef al. (2017) presented a brief
overview of the major optimization objectives utilized in
WSNs and introduced some recent studies of MOO.
By Mostafaer and Shojafar (2015), a novel algorithm
based on an Imperialist Competitive Algorithm (ICA) has
been presented to select sensor nodes. Further, four
Multi-Objective (MO) metaheuristics such as Firefly
Algorithm (FA), the Non-dominated Sorting Genetic
Algorithm (NSGA-II), Artificial Bee Colony (ABC) and
Strength Pareto Evolutionary Algorithm (SPEA2) are
applied to solve the relay node placement problem
m WSNs (Lanza-Gutierrez and Gomez-Pulido, 2015).
Azmol and Navimipour (2017) mtroduced an overview of
the deployment mechanisms which have been used in
WSN. In this study (Kaur and Arora, 2017), several nature
mspired algorithms such as Grey Wolf Optimization
(GWO), Frrefly Algorithm (FA) and Flower Pollmation
Algorithm (FPA) are applied to estimate the optimal
location of sensor nodes and the performance of these
optimization algorithms are evaluated m terms of
localization accuracy and number of localized nodes. By
Arora and Singh (2017) butterfly optimization algorithm
has employed for the node localization in WSNs. In the
same context, Yang (2006) have determined the sk
node location m WSNs by utilizing genetic algorithms.
Chen et al. (2015) presented a method to select the
multiple mobile sink nodes in WSNs based on Lion
Optimization Algorithm (LOA) to increase the network
lifetime. Moreover, the optimal location solution through
utilizing the Mixed Integer Linear Programming (MILP)
solution to the problem in small-scale WSNs has
mtroduced by Hassan et al (2014). By Ahmed et al.
(2017), an algorithm based on Whale Optimization
Algorithm (WOA) has proposed and the proposed fitness
function is designed to reduce the numbers of active
nodes and mimmize energy consumption m order to
prolong the network lifetime. Also, in the same context,
TIgbal et al. (2015) addressed several optimization
problems and illustrated the existing optimization solution
relating to WSNs such as design, operation, deployment
and placement.

Sink node localization problem is regarded as an
optimization problem due to size and complexity
factors. So, the optimization algorithms are quite
effective to solve optunization problems, especially the
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multi-objective problems. Therefore, this a motivation to
use nature-inspired optimization algorithms for WSN as
these are robust and effective. To the best of our
knowledge, little attention has been paid n utilizing other
nature-inspired algorithms such as flower pollination
algorithm (Ang, 2012) and the modified flowering
pollination (Nabil, 2016} to solve real-world problems. A
Multi-Objective localization algorithm based on the
Modified Flowering Pollination called (MOMFPA) to
determine the position of multiple sink nodes in WSNs
was proposed m this study. As a consequence, this study
differs from the literature described above in the
following: each objective function is treated separately
and all objective functions are evaluated for each pollen
{(pollen from flowers are transported by pollinators such
as 1nsects). In general, a non-dominant solution (best
position) is used to guide the so-called pollen leader. At
each iteration, non-dominant solutions to detect Pareto
optimal solutions are stored in an extemal archive
{(Pradhan and Panda, 2012). The following key issues are
addressed in MOMFPA via.; evaluating objective
functions by selecting external archive leaders to promote
diversity in the external archive and mamtaimng the
external archive and the neighborhood topology used to
exchange information. Tn addition, the greedy heuristic
method (Jovanovic and Tuba, 2013) is used to generate
the data transmission paths for the sensor nodes to the
sink node after determinming the position of the sink nede.
Further, the main objective of the proposed MOMFPA
here is to optimally choose the position of the multiple
sink nodes m the WSN in order to effectively reduce the
energy consumption of the sensor nodes that are the
furthest from the sink node. Eventually, the experimental
results have revealed that the proposed MOMFPO
significantly achieved the best location of multiple sink
node as well as the low energy consumption in WSNs
compared with Multi-Objective Differential Evolution
(MODE) (Adeyemo and Otieno, 2009) and Multi-Objective
Particle Swarm Optumization (MOPSO) (Reyes-Sierra and
Coello, 2006) over different networks sizes.

Preliminaries

Modified flower pollination algorithm: Xin-She Yang
proposed a new nature-inspired algorithm called
Flower Pollination Algorithm (FPA) (Ang, 2012). Tt is
ingpired from the natural process ‘pollination of
flowers’. This metaheuristic algorithm has evolutionary
characteristics and its convergence rate 1s relatively
high as compared to other nature-ingpired algorithms
(Yang et al., 2014). Four rules which have been
derived for FPA based on the characteristics of
pollination which are:



Int. J. Syst. Signal Control Eng. Appl., 11 (1):20-29, 2018

+  (Global pollination process is attained by considering
biotic cross-pollination  because
pollinators perform levy flights

¢ Local pollination is attained through self- pollination
and abiotic

¢+ Flower constancy indicates the probability of
reproduction which dmectly depends on the
similarity

and various

Switch probability p to ensure the balance between
the local pollination {exploitation) and global pollination
(exploration) and its value ranging by Chen and L1 (2013).
In overall pollination activities, local pollination can have
a value of p insignificant fraction due to the various
factors like physical proximity, wind, etc. These main two
phases can be achieved using FPA as follows.

Global pollination process: Pollinators such as insects
carry the flower pollens through long distance to
guarantee that the reproduction and pollination of the
fittest (g.). Mathematically, global pollination process
combined with flower constancy 1s formulated as follow:

X" =X HL(X 2. @

Where:

3, = The pollen i at iteration t also the current best
solution obtained is represented by g.

= The step size scaling factor

= The pollination strength which used Levy
distribution (Pavlyukevich, 2007)

Y
L

Local pollination process: Equation 2 demonstrates the
combination of this process with flower constancy as
follow:

XM =X e(X X ) (2)

To mimic the flower constancy, two pollens from the
different flowers are X, and X, in a restricted
neighborhood region of the same plant species. Also, € is
a uniform distribution by Chen and L1 (2013).

On the other hand, Nabil (2016) has been proposed
an extended version for the original FPA termed as a
Modified Flower Pollination Algorithm (MFPA) in order
to improve the local pollination through; use of the clonal
property mspired by the clonal selection principle and
Ppresent a step-size scaling factor v, m order to modify the
local pollination. This study focuses only on the MFPA
as a recently nature-inspired algorithm to enhance and
deal with the problem of reducing both of the numbers of
multiple sink nodes and the total energy consumption in
WSNs.
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Multi-objective optimization: Several optimization
problems are of course, multiple objectives which usually
have more than one objective function that 13 in conflict
with each other. In Multi-Objective Optimization (MOO),
there are solutions but none of them can be
considered as the winner. Therefore, the external archive
1s constructed to store a historical record obtained along
the search space for the non-dominated vector. The
external archive is built in the initialization phase.
Then all solutions obtained are rearranged according to
non-dominance compared to each other in the
space to choose the non-dominant solution. Finally, any
non-deminance solution is stored in the external
archive.

The major aim of MOO 1s to locate the trade-off
between conflicting objectives and the findings of MOO
are a collection of solutions. PointX'e is a Pareto optimal
if for allXecand g = 1, 2, ..., k either, vig(f(X)=£(x'y) or
there 13 at least one I € gsuch that fX)z1(xX)
(Coello-Coello et al., 2001).

Generally speaking, Multi-Objective Evolutionary
optimization Problem (MOEP) (Coello et al., 2001) can be
formulated as follow; the vector % = [0 35, }T satisfies;
n inequality constramts; ¢(Xj201 = 1, 2 n the
equality constraints w,{X)=0i = 1, 2,..., p and optimizes
e I |

OO problem 1s” split mto a number of smgle
objectives and hence they are optimized concurrently.
Modified Flower Pollination Algorithm (MFPA) is
regarded as a new meta-heuristic was adapted to
present a new version called Multi-Objective Modified
Flower Pollination Algorithm (MOMFPA) to solve the
multi-objective problems by using specialized fitness
functions. In order to achieve that non-dominated Pareto
optimal solutions are applied (Coello, 2000). As well as the
multi-criterion metrics, the solutions of multi-objective
problems cannot be compared using relational operators.
Therefore, a non-dominant solution 18 a solution if and
only if the following criteria are met.

S

Pareto dominance: V=_v_ v, ... v)and U= (u, u, .., u)
are a given two vectors. 1IJ dominates V if and only if U is
partially less than V in the objective space as follows:

£ (U) <, (V)i

where m is the number of fitness functions (Pareto, 1964).

Pareto optimal solution: U represents the Pareto optimal
solution 1if and only if any other solution obtamned cannot
be dominated by 1.
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Pareto Optimal Front (PF,.,) is a set of the Pareto
optimal solutions and consists of a set of non-dominated
solutions. So, the major task of the optimization
algorithm 1s to find the most accurate approximation of
true Pareto optimal solutions, ie., convergence with
uniform distributions, 1.e., coverage, across all objectives
(Mirjalili, 2016).

For fair comparisons among the proposed
MOMFPA and the compared algorithms, in this study, to
evaluate the performance of comparison algorithms four
well-known assessment measures are applied. The details
of each measure are explained below.

Metric of Spacing (MS): Shows the distribution of
non-dominant solutions obtained by a specific algorithm
(Deb, 2011) defined as follows:

“4)

Where:
MS = The metric of spacing

d. = The Euclidean distance between the i-th member in
PF and nearest member in PF

PF = The generated Pareto front

d = The average of all distances

The Euclidean distance is defined in Eq. 5. Tn order to
obtamn the best uniform distribution in PF, a small value 1s
assigned to S and hence, the value of S will be zero
when d =d this means all non-dominated solutions are
uniformly distributed:

TR

d(a,b) =d(ba) = [ > 4)

1=1

(3)

Where:
a = (fla: fZa: fSa:---:-fna)
b = (fi, f, T fw) Tepresents two points on the PF

Metric of spread: The spread metric (A) was
proposed by Deb (2011) in order to set the spread
achieved by non-dominated solutions which are acquired
by specified algonithm. Hence, this metric can analyze how
the achieved solution is extended across the Pareto
Optimal Fronts (PFqmq) and formulated as follows:

i+, + 3/d, -4 ©
A=——— = -
d;+d,+(ng-1)d
Where:
d; and d; = The Euclidean distances between the extreme

solutions in PFq, 4 and pf
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d; = The Euclidean distance between each point
in PF and the closest point in PF_ ;.

o = The total number of members n PF

d = The average of all distances

As indicated in Eq. 6, the value of A is always greater
than zero and a small value of A mdicates the better
spread of the obtained solution; A = 0 indicates to the
best solution of PF.,, having been found and 4, = 4 for all
non-dominated points.

Generational Distance (GD): In the first GD has
been presented by Veldhuizen and Lamont (1398) to show
the capability of different problems for finding a set of
non-dominated solutions having the lowest distance with
PF opima- S0, the optimization algorithm with the mimimum
GD results has the best convergence to PF.,., (Coello
and Pulido, 2005). GD measure is defined as follows:

Gp=1 ’Edﬁ
Npe ¥i=t
Where:

1y = The number of agents in the obtaned Pareto front
PF

d; = The Euclidean distance between i-th agent in PF
and the nearest agent in FF..4

9

In GD metric, the best-obtained value is equal to zero
which corresponds to PF exactly covers the PF. .,
(Sadollah ef ai., 201 5).

Inverted generational distance: The mathematical

formulation of Inverted Generational Distance (IGD)
similar to GD. IGD has been modified by Sierra and Coello

(2005) as follows:
[
IGD =YY= —

n

(8)

The true Pareto optimal solutions are indicated by n,
the Euclidean distance between n and d, which indicates
the closest obtamed Pareto optimal solutions. Therefore,
the main difference between IGD and GD is for each true
solution as far as it is the closest Pareto has been
obtained in the objective space.

MATERIALS AND METHODS

The proposed MOMFPA: Pollination of flowers 1s a
process assoclated with the transfer of pollen. The main
actors in the implementation of this transport are insects,
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birds, animals, bats and other. There are flowers and
insects that have done what we call pollinating flowers of
assoclation. These flowers can attract only the birds that
participate m the association and these insects are
regarded as the main pollinators of these flowers (Glover,
2007). A multi-objective version has been presented here
In a positive way to solve a multi-objective problem
called MOMFPA. And it 13 a population-based algorithm
and therefore each pollen represents a solution in
multidimensional space as the best previous experience
for each pollen recorded i the external archive and must
know all the main pollen selution that has been obtained
(experience). Finally, when the non-dominated solutions
exceeds the allocated size of the external archive, then
remove the crowded members. The two mam goals
for the multi-objective optimization algorithm are
the true Pareto optimal solutions should be obtained
and the obtained solution should be well-distributed
across all objectives. Inaddition, Algorithm 1 shows the
step-by-step pseudo-code for MOMEPA 1n detail.

Algorithm 1 (Pseudo code for MOFPA):
Initialization: population Xi (i = 1, 2, ..., n), random population (pop) of
size n, identify g* which is the best sohition in pop, identity pe[0, 1] to
switch probability between global and local pollination, archive with the
obtained non-dominated solutions, iteration t = 1, maximum iteration T
Whilet<=T do
For i=l ton
If rand >p then
Draw vector 1. from levy distribution, I. has D-dimension
Apply the global pollination using eqx!™; = x+vL (g'-x%)
Else
Randomly choose j and k among all the solution
Diraw fiom unitorm distribution in [0, 1]
Do local pollination via. Eq. 2
End if
Calculate the objective values for each search agent
Update the archive to the obtained non-dominated solutions
Find the non-dominated solutions
If the archive is full
Add the new solution to the archive
Run the grid mechanism to omit one of the current archive members
End if
End for
X = SelectLeader (archive)
Exchide X from the archive termporarity to avoid selecting the same leader
Add back leader to the archive
t=t+1
End while
Output: Return archive

RESULTS AND DISCUSSION

In this study, the statistical results of the proposed
algonthm MOMFPA compared with MODE and MOPSO
are discussed. Simulation parameters of the proposed
algorithm are illustrated in Table 1. Also, the simulation
nodes are supposed to mimic functions of Mica Mote
sensors with energy model (Wightman and Labrador,

24

Table 1: Simulation parameter

Parameters Values

Deplovment area 1000=1000 m

No. of nodes 100, 200, 400, 600, 800,1 000, 1200, 1400,
1600, 1800, 2000

Sensor node model Mica Mote
Node sensing range 20 m
Node communication range 100 m
Node energy distribution Unitorm
Max energy 2000 (mA-h)
Node location distribution  Uniform

Table 2: Statistical results of sink nodes number and energy consumption
obtained from the proposed algorithm MOMFPA vs. MOPSO and

MODE algorithms
N Metrics MOMFPA  MOPSO MODE
100 No. of sink node 4 5 4
Energy consumption 5741 6112 6380
200 No. of sink node 4 4 5
Energy consumption 6328 5941 6920
400 No. of sink node 4 5 6
Energy consumption 5814 6002 7031
600 No. of sink node 5 6 5
Energy consumption 6301 6810 7637
800 No. of sink node 6 5 7
Energy consumption 6935 7531 8122
1000 No. of sink node 7 8 8
Energy consumption 7112 7245 7932
2000 No. of sink node 8 9 8
Energy consumption 7630 8351 8952
3000 No. of sink node 8 9 7
Energy consumption 8241 8930 8623
4000 No. of sink node 10 11 10
Energy consumption 8654 9735 9352
5000 No. of sink node 11 11 12
Energy consumption 9130 10542 10835

2011). In addition, the Network sizes (N) from 100-5000
nodes. The algorithm is run repeatedly for M = 10 times
for statistical sigmficance of the results.

Objective function: In order to adapt the MFPA to deal
and handle the nmumber of sink nodes as well as energy
consumption as a multi-objective problem, two fitness
functions are formulated. Equation 1 and 2 are designed
as the fitness functions of the proposed algorithm:

Fix)=Yy ©)
i=1 Ei
1
f(Xz ) = (10
n=1 Eﬂ
Where:
N = The No. of sensor nodes in WSN

E, = The energy for each sensor node
N, = The No. of sensor neighbor served by sink node
E, = The energy for each sensor node for smk’s

neighbours

Table 2 summarizes all obtained results for the energy
consumption and sink nodes where N means the network
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Table 3: Statistical results of the compared algorithms using GD, IGD, spacing and spread over network size 100 through 5000

GD 1GD Metric of spread Metric of spacing
Algorithms Ave. Std. Ave. Std. Ave. Std. Ave. Std.
100 nodes
MOMFPA 1.70E-01 2.41E-03 0.00417756 3.75E-03 1.62E-03 2.34E-0d 2. 10E-04 84A5E-05
MOPSO 1.78E-01 2.46E-03 0.28056308 3.07E-02 1.23E-02 6.45E-04 1.41E-02 6.92E-04
MODE 1.77E-01 2.45E-03 0.205791727 2.63E-02 1.66E-02 T.51E-0d 1.03E-02 5.93E-04
200 nodes
MOMFPA 2.535E-01 3.61E-03 2.43E-03 3.52E-04 3.15E-04 1.27E-04 0.006266341 5.63E-03
MOPSO 2.67E-01 3.69E-03 1.84E-02 9.68E-04 2.11E-02 1.04E-03 0.420844621 4.61E-02
MODE 2.65E-01 3.68E-03 2.49E-02 1.13E-03 1.55E-02 8.90E-01 0.30868759 3.95E-02
400 nodes
MOMFPA 341 E-01 4.81E-03 0.008355121 T.50E-03 3.23E-03 4.69E-041 4.20E-04 1.69E-04
MOPSO 3.56E-01 4.92E-03 0.561126161 4.15E-02 2.45E-02 1.29E-03 2.82E-02 1.38E-03
MODE 3.53E-01 4.90E-03 0.411583453 5.26E-02 3.32E-02 1.50E-03 2.07TE-02 1.19E-03
600 nodes
MOMFPA 6.39E-02 9.02E-04 0.001566585 1.41E-03 6.06E-04 8.79E-05 7.87E-05 3.17E-05
MOPSO 4.67E-02 9.22E-04 0.105211155 1.15E-02 4.59E-03 2.42E-04 5.29E-03 2.60E-04
MODE 6.62E-02 . 19E-04 0.0771718%7 9.87E-03 6.22E-03 2.82E-0 3.88E-03 2.22E-04
800 nodes
MOMFPA 5.07E-03 8.51E-02 0.00208878 1.88E-03 8.08E-04 1.17E-04 1.05E-04 4.22E-05
MOPSO 9.05E-02 8.89E-02 0.14028154 1.54E-02 6.13E-03 3.23E-04 7.05E-03 346E-04
MODE 9.96E-03 8.83E-02 0.102895863 1.32E-02 8.29E-03 3.75E-0d 5.17E-03 2.97E-04
1000 nodes
MOMFPA 1.70E-01 2.38E-01 3.47E-03 3.42E-03 1.63E-01 2.33E-01 1. 74E-02 7.63E-02
MOPSO 3.40E-01 4.76E-01 6.94E-03 6. 84E-03 3.26E-01 4.66E-01 349E-02 1.33E-01
MODE 2.535E-01 3.57E-01 5.21E-03 5.13E-03 2.45E-01 3.50E-01 2.62E-02 1.14E-01
2000 nodes
MOMFPA 1.71E-01 2.38E-01 4.25E-03 3.78E-03 1.55E-01 2.27E-01 2. 14E-02 844E-02
MOPSO 341E-01 4.77E-01 8.50E-03 7.57E-03 3.09E-01 4.54E-01 4.27E-02 1.69E-01
MODE 2.56E-01 3.58E-01 6.38E-03 5.67TE-03 2.32E-01 3.41E-01 3.20E-02 1.27E-01
3000 nodes
MOMFPA 1.72E-01 2.40E-01 6.91E-03 4.83E-03 1.67E-01 2.36E-01 3.49E-02 1.08E-01
MOPSO 345E-01 4.79E-01 1.39E-02 9.67E-03 3.33E-01 4.71E-01 6. 98E-02 2.16E-01
MODE 2.39E-01 3.60E-01 1.04E-02 T7.25E-03 2.50E-01 3.54E-01 5.23E-02 1.62E-01
4000 nodes
MOMFPA 1.79E-01 2.44E-01 2.31E-01 2. 79E-02 7.36E-01 4.95E-01 1.16E+00 6.22E-01
MOPSO 3.57E-01 4.88E-01 4.62E-01 5.57E-02 1.47E+00 9.91E-01 2.32E+00 1.24E+00
MODE 2.68E-01 3.66E-01 3.46E-01 4.18E-02 1.10E+00 7.43E-01 1. 74E+00 9.33E-01
S000 nodes:
MOMFPA 1.73E-01 2.40E-01 7.14E-03 4.90E-03 1.66E-01 2.35E-01 3.59E-02 1.09E-01
MOPSO 345E-01 4.80E-01 1.43E-02 9.81E-03 332E-01 4.71E-01 T18E-02 2.19E-01
MODE 2.59E-01 3.60E-01 1.07E-02 7.36E-03 2.49E-01 3.53E-01 5.38E-02 1.64E-01

size. Table 2 shows the number of sink nodes obtained
from the proposed algorithm less than the obtained
compared with MOPSO and MODE through all networks
sizes with low energy consumption.

Frequently, the proposed algorithms in the previous
literature are applied medium size WSNs although, WSNs
composes of hundreds or thousands of sensor nodes can
be deployed, the location of multiple sinks still requires
advanced studies. However, the proposed MOMFPA 1s
applied n the different Networks sizes (N) according to
the fitness function. To test the cardinality of sink nodes
of the proposed algorithm, 30 iterations were tested
on the same network. After all, the results are presented
in Table 3 and Fig. 1.

Table 3 shows the statistical results using GD, IGD,
spread and spacing obtained by the proposed and the
compared algorithms. Table 3 revealed that the MOMFPA
outperforms the MOPSO and MODE on most of all
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networks sizes. In order to evaluate the superior
convergence of the proposed algorithm mtroduced here
can be deduced from the obtained results of GD and IGD.
According to the results collected by the GD revealed that
the MOMEFPA surpasses the MOP SO and MODE.

Figure 1 displays the PF obtained by MOMFPA with
the fitness function for all network size. As noticed from
Fig. 1, the MOMFPA provides superior results toward
most of the true Pareto-optimal fronts and competitive
convergence compared with the MODE and MOPSO
algorithms.

As a summary, it’s clear from the aforementioned
results, the proposed MOMFPA has been achieved better
results in terms of energy consumption and an optimal
number of sink nodes on the majority of the networks
sizes employed Due to the fact of minimal transmission
cost from the source nodes to the sinks for MOMEPA.
Also, the balance between a number of sink nodes and
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Fig. 1: Best Pareto optimal front obtamed by MOMEFPA over networks sizes 100 through 5000: a) 100; b) 200 ; ¢) 400,
d) 600, e) 80O, £) 1000, g) 2000; k) 3000; 1) 4000 and 1) 5000 nodes
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Table 4: Mean, worst and average fitness function obtained from the different algorithms

Nodes Metrics Mean Best Worst
100 MOMFPA 8.59E-03 6.67E-01 1.01E-02
MOPSO 2.22E-01 6.75E-01 1.81E-01
MODE 1.50E-02 3.38E-01 1.99E-02
200 MOMFPA 1.29E-02 1.00E+00 1.52E-02
MOPSO 3.34E-01 1.01E+00 2.72E-01
MODE 2.24E-02 5.07E-01 2.99E-02
400 MOMFPA 1.72E-02 1.33E+00 2.03E-02
MOPSO 4.45E-01 1.35E+00 3.62E-01
MODE 2.99E-02 6.75E-01 3.98E-02
600 MOMFPA 3.22E-03 2.50E-01 3.80E-03
MOPSO 8.34E-02 2.53E-01 6.79E-02
MODE 5.61E-03 1.27E-01 TATE-03
800 MOMFPA 4.30E-03 3.33E-01 5.07E-03
MOPSO 1.11E-01 3.38E-01 9.05E-02
MODE T.48E-03 1.69E-01 9.96E-03
1000 MOMFPA 5.51E-02 2.50E-01 3.16E-01
MOPSO 1.10E-01 5.00E-01 6.32E-01
MODE 8.27E-02 3.75E-01 4.74E-01
2000 MOMFPA 6.93E-02 2.93E-01 4.14E-01
MOPSO 1.39E-01 5.87E-01 8.28E-01
MODE 1.04E-01 4.40E-01 6.21E-01
3000 MOMFPA 1.41E-01 1.41E-01 2.85E-01
MOPSO 2.83E-01 2.82E-01 5.70E-01
MODE 2.12E-01 2.11E-01 4.28E-01
4000 MOMFPA 7.62E+00 1.22E+01 1.36E+01
MOPSO 1.52E+01 2.44E+01 2. 72E+01
MODE 1.14E+01 1.83E+01 2.04E+01
5000 MOMFPA 2.05E-01 2.45E-01 2.50E-01
MOPSO 4.09E-01 4.90E-01 5.01E-01
MODE 3.07E-01 3.67E-01 3.75E-01

Table 5: Comparison proposed MOMFPA with other studies

Ref. Techniques Nodes Remarks

Yang (2006) Flower pollination algorithm 100 Minimizing the localization error
Chen et al. (2015) Butterfly optimization algorithm 25-150 Consistent location of nodes
Igbal et af. (2015) Lion optimization algorithm 100 Lifetime increased

Srinivasa et al. (2016) PSO-based multiple-sink 300 Energy decreased

Dandekar and Deshmukh (2013) PSO with exhaustive search 300 Lifetime increased

Kaur et al. (2016) Multiple sink location 100 Energy decreased

Proposed MOMFPA 1000: 5000 Optimal sink node location

energy consumption that nodes and sink consumed in
the network. In addition to the aforementioned results,
Table 4 outlines the performance of the algorithms using
the fitness function. Table 4 shows the average fitness,
best and worst values obtained over M runs. The best
performance is achieved by the proposed MOMFPA
proving its ability to choose optimal sink nodes locations
effectively.

Comparison with existing studies: However, a brief
comparison with the previous related studies is depicted
m Table 5. The mformation about the proposed
techniques (methods have been used to choose the
mumber of sink node) and Network size (N) reported in
previous studies are recorded. Consequently, it is clear
that the proposed MOMFPA providing the best
performance in comparison with the recent algorithms
described in Table 5, in terms of minimizing the number of
sink nodes and energy consumption in order to increase
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the network lifetime. Another advantage of the proposed
algorithm 15 MOMFPA tackle with the sink nod
localization as a multi-objective problem.

CONCLUSION

A modified flower pollination algorithm has been
adapted to optimize the multiple sink node which 1s
regarded as a Multi-Objective problem m WSNs and 1s
termed as (MOMFPA). In addition, a newly designed
fitness function is applied in order to select the minimal
number of smk nodes and reduce the total energy
consumption. To evaluate the proposed MOMEPA, ten
different network sizes and four assessment metric has
been applied The statistical results indicated that the
MOMFPA has been achieved better efficiency on
reducing a total number of sink nodes and the power
consumption. Tn addition, the simulation results confirmed
that the proposed MOMFPA was able to find the optimal
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Pareto Front (PF) in comparison with well-recognized
algorithms in the optimization domain like Multi-Objective
Differential Evoluton (MODE) and Multi-Objective
Particle Swarm Optimization (MOPSO).

RECOMMENDATIONS

For future work, we will try to employ the MOMFPA
algorithm in different applications such as multi-hop
routing and the cost of sink nodes. Moreover, different
modifications will be added to the MOMFPA such as
using chaotic maps. Generally speaking, the research on
multiple sink nodes in WSNs is more complicated and
needs further investigation.
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