International Tournal of Systems Signal Control and Engineering Application 10 (1-6): 24-31, 2017

ISSN: 1997-5422
© Medwell Journals, 2017

An Effectual Scheme to Improve COCOMO)|| Model using
OOPS Metric-Based Source Code Size

Sepide Sabrjoo
Department of Computer Engineering and Information Technology,
Payam-e-Noor University, Tehran, Iran

Abstract: Now a days, the correct estimation of effort, cost and time for the process of software development
plays a major role in the success or failure of software engineering projects such that the acquisition of project
size is the first step to estimate the effort of software. COCOMO|| Model is the clearest and most reliable model
for the estimation of the costs of software. Results from previous studies indicate that because of different
structures n models, changes n the proposed hypotheses with the passage of time and different estinations
n project size, the difference between predicted and real values are huge. In this study, an effective scheme 1s
proposed which improves the time, cost and effort in the software for the COCOMO|| Model. The proposed
scheme uses Object-Oriented Project Size (QOPS) metric to decrease the errors of source-code size estimations.
The OOPS used here 1s extracted from the class diagram of the project. The obtained experimental results from
12 Java projects show that the proposed method satisfies the COCOMO)| Model properties as well and
decreases the Mean Magnitude of Relative Error (MMRE) compared to the other works.

Key words: Estimation, effort, reliable, ndicate, experimental, obtained

INTRODUCTION
Designing software systems tough and
expensive. Software engineering as a science, proposes
the ways to measure a project 1 quantity (Saez ef al.,
2016). The reports from the projects indicate that there is
almost no control on software projects, so that the real
efforts of a software project are more than estimated
efforts (Mittas et al., 2015). Therefore, projects generally
last longer than the plammed scheduled time (Ceke and
Milasinovic, 2015). Thus, the estimation of time, cost and
effort to fulfill the project and the factors 1s undoubtedly
a very serious 1ssue (Chu, 2016). In recent years,
numerous studies have been conducted in this area,
resulting in the increase of software estimation accuracy
(Jain et al, 2014a, b). The estimation of software
development cost 1s a major factor in project development
which includes a variety of methods and techniques
(Torgensen and Shepperd, 2007; Xu and Khoshgoftaar,
2004). These techniques are mcluded top-dowrn,
bottoms-up, expert judgment, Parkinson’s Law, estimation
based on analogy, function points and object points
(Jorgensen and Sjoberg, 2004; Mittas et al., 2008). Among
these models, the estimation of cost based on object
points 1s more efficient because it does not rely on the
details of implementation in which the estimation of
complexity factor is simpler (Dio et al., 2015). Obtaining
the size of a project 1s the first step in estimating the effort

are

24

of software. Early estimation of code size has evolved as
an important research issue in software science, because
it enables software managers to ask the effort for the
required development in the software projects in the early
development phase (Azam ef al., 2014; Pfleeger et al.,
2005). Further, it assists the allocation of resources,
development. planning in
development activities (Jorgensen and Shepperd, 2007).
SLOC (Source Lines of Code) as the mput of early
size, has been used m most of the cost estimation
instruments such as COCOMO, COCOMO)||, Price/S,
SEER, SLIM, etc. (Zhou et al., 2014). Each of these
models has their own advantages and disadvantages. For
example, SEER-SEM has two main limitations in effort
estimation. First, there are over fifty input parameters
related to the various factors of software projects which
might increase the complexity of SEE-SEM, especially for
managing the uncertainty from these inputs. Second, the
specific details of SEER-SEM increase the difficulty of
discovering the nonlinear relationship between the

efficient and effective

parameter 1puts and the comresponding outputs
(Dio et al., 2015).
The second of Constructive Cost Model

(COCOMO|) 18 the clearest existing model to estimate
software development cost (Jain and Singh, 2014a, b;
Chalotra et al., 2015). The model is better than the other
of
sufficient documents for people that various commercial

models because several reasons: it provides

Int. J. Syst. Signal Control Eng. Appl., 10 (1-6): 24-31, 2017

instruments are available to use it, it is widely evaluated
and used m different organizations, it 1s an empirical
model which has been acquired through collecting data
from different software projects. Documents of this model
are available and used in most of the organizations. The
model is implemented via different algorithms
(Soleimamnian et al., 201 5). Antoniol et al. (1999) COCOMO
81 Model has been proposed by Boehm. COCOMO uses
parameters for software effort estimation which are
calculated by regression analysis of 63 types of project
data. This version assumes that the software under
design is produced based on waterfall model and is
implemented using the structured languages such as C or
FORTRAN. COCOMO Model exists m a basic,
mtermediate and advanced form. The model considers
cost, features of project, product, hardware and staffs in
a precise estimation. However, while it works properly for
existing software projects, it faces problems with regard to
new software methods (Boehm, 2000). The COCOMO|
supports a spiral model in which source code size is
assumed as a key mput. The results from mdependent
studies on COCOMO|| Models indicate that there 13 a
significant difference between the predicted values and
the real value. The reason could be one of the following:
Different structure of models, change in the proposed
hypotheses by the passage of time, wrong estimation of
project size (Johnson, 1998; Chen et af, 2004). The
proposed method by Garg et al. (2014) provides better
results from COCOMO| Model. In this method,
COCOMO| Model has been used at the middle level.
Fifteen extra cost drivers are the new features of this
model. These cost drivers transform the values which are
required to get multiplication factor modulator of the
estimation to a constant value (EAF). In this method,
COCOMO|| Model 15 integrated with the Function Point
(FP) Model so as to reduce the complexity of the model,
whereby accuracy has is improved in COCOMO| Model
by means of ratio of function pomts to Kilo Lines of Code
(KLOC). However, the calculation of FP has an extent of
change. The rules for FP calculation have been defined
and formulated properly but FP manual count and
recount processes are more expensive and more
time-consuming than automatic count. Also, in the
method MMRE parameter 1s 0.2641.

Soleimaman ef al (2015) a hybrid of Genetic
algorithm with a Tabu search algorithm 1s used for effort
estimation. Although, in this model, the effort estimated
in COCOMO|| Model is improved but the execution time is
long and in high computing becomes problematic.

According to Soleimaman et af. (2015), COCOMO||
Model 13 improved by a continuous genetic algorithm. In
this method, 60 projects from the dataset of NASA
projects have been selected to study the efficiency of the
model. The results show that this algorithm is capable of

25

moderating the required parameters of the COCOMO||
Model and creating an effective model m SCE of
COCOMO)|. However, MMRE parameter in this method
18 02153 which 1s greater than 0.2 and is not very
accurate.

In this study, we have tried to partially improve the
size parameter in the COCOMO)| Model. Tn development
of object-oriented software, class diagrams are available
in the step of early development, found as the basis for
producing source code in the system. Thus, it is
reasonable to use information obtained from class
diagrams to estimate SLOC in object-oriented system
(e.g., POPS and OOPS metric). The POPS (Predictive
Object Points) metric 1s a suitable metric to estimate
software size and evaluate the effort and find the cost and
the project timetable which is based on a behavior which
proposes each class together with high-class inputs to
define the structure of a system (Leung and Fan, 2002).
This metric is a suitable size index in object-based
systems. Investigations indicate that POPS metric
outperforms FP metric in size estimation which can have
the best application in the estimation of object-oriented
systems (Jain et al., 201 4a, b). This metric has been used
by Jain and Singh (2014a, b) to estimate the required effort
in COCOMO)| Model which is used in KLLOC measurement
and effort estimation using linear regression model
(Zhou et al., 2014) the researchers proposed a source
code prediction model based on OOPS (Object-Oriented
Project Size) metric. In UML-Based Software Sizing, vet to
date, POPS metric has been used in COCOMO| Model.
The analysis of scientific investigations shows that very
few works have conducted a comprehensive and
comparative analysis on estimated SL.OC based on OOPS
and POPS metric. Moreover, OOPS metric is vet to be
used in COCOMO|| Model.

In this study, an effective scheme has been proposed
to improve COCOMO|| Model in the estimation of cost,
time and effort of software which uses source code size
based on OOPS metric extracted from class diagram. The
obtamed experimental results from 12 Java projects and
their APT files show that the proposed method satisfies
the COCOMO|| Model properties as well and decreases
the Mean Magnitude of Relative Error (MMRE) compared
to the other works. This mformation 1s extracted from SCIL
tools that are available in the development step of
software.

Basic theory

COCOMO|| Model: In this model, effort of software is
acquired from Eq. 1 to complete the project based on the
person and month through calculating the project size
(Garg et al., 2014

Effort = Ax({size) BxPM (1)

Int. J. Syst. Signal Control Eng. Appl., 10 (1-6): 24-31, 2017

InEq. 1, PM is the effort adjustment factor for effort

estimation which 13 considered equal to 1 for ease of
comparison in all the projects; A and B refer to the
coefficients which are calculated in three different modes
of COCOMO|| Model regarding (Table 1) (Jamn and Singh,
2014a, b).
OOPS metric: This metric is size mietric in
object-oriented software mn which the names of class,
attributes, methods and parameters are defined. The
metric 1s calculated as follows (Zhou et al., 201 4):

a

¢ OOPS =0, Tokenset = {}

* Name of process class; if the name of the class does
not exist in Token set per token, it will be added to it,
whereby OOPS will equal to 1

+ Aftributes of process in class; if the character does
not exist in Tolken set per token, the token will be
added to Token set and the attributes will be added
to OOPS

*+ Process methods m class; if the name of the method
does not exist in Token set per token, the token will
be added to Token set and the number of parameters
will be added to OOPS

Table 1: The values of A and B in COCOMO| Model (Johnson, 1998)

Models A B Project size

Organizational 2.4 1.05 The value of KI.OC ranges firom 2-50
Serni-open 3.0 112 The value of KLOC ranges from 50-300
Embedded 3.6 1.20 The value of KLOC exceeds from 300

Numnber of
classes

Calculate effort
adjustment factor

Calculate B
parameter

Calculate A
parameter

| Efffort = Ax(Size)}PM |

Obtain optimal
effort of software

Fig. 1: Block diagram of the proposed method

26

Although, the determination of a proper tolken is
tough in most cases in this metric but OOPS 1s acquired
from class diagram. Therefore, it is used to predict SLOC
at the earliest step of development.

Pops metric: This metric is a suitable metric to estimate
software size which is grounded in behavioral basis,
proposed each class together with high-level inputs to
define the structure of a system and calculated based on
the equation (Tain and Singh, 2014a, b):

1.1

{1+ [(l + Avgnoc)x AngIT] +

(JAvgNOC — AvgDIT|)" ™) TIC X WMCx AMC

Pops =
P 7.8

(2)

According to the equation above, AVGNOC equals

to average number of classes that mherit from a class

directly; AVGDIT equals to average depth of mnheritance

tree (it is calculated based on class inherit and index);

AVGTLC equals to average number of zero-level classes

1n class diagram (it 1s calculated based on class inherit and

index); AMC ecquals to average number of methods in

each class; WMC equals to average number of weighted
methods in each class.

MATERIALS AND METHODS

The proposed method: The proposed method has been
shown in Fig. 1 using block diagram. The effort estimation

LN (Sloc) = 0.796+1.042x
LN (OOPS)

EKLOC = 2.857069+0.0
04605xPOPS

Int. J. Syst. Signal Control Eng. Appl., 10 (1-6): 24-31, 2017

Table 2: Measurement of SL.OC based on QOPS and POPS metric

Project name QOPS count POPS count Actual SLOC ESLOC based on OOPS ESLOC based on POPS
abbot-1.3.0 1367 51.5141 4326 4104 3004
barcodedj-2.1.0 740 1.4370 1863 2164 2863
fip4j-1.7.2 2460 1008 10488 7569 7493
httpunit-1.7 18227 17653 70150 61004 84153
jegap_3.6.2_full 27477 19140 147639 93564 91000
jip-sre-1.2 8979 3500 34993 29172 19000
krysalis-jCharts-1.0.0-alpha-1 5655 3120 21996 18020 17224
mx4j-3.0.2 1547 18.1 5055 4700 3000
openfast-1.1.2 6367 2788 22726 20389 16000
PDFBox-0.7.3 14962 14164 65494 49664 68082
prevayler-2.3 2800 2000 9256 8663 12060
xBasel 4998 3900 26473 15844 20810

scheme to improve COCOMO)| Model consists of 7 steps.
The block diagram of the proposed approach is shown in
Fig. 1 and it is detailed as follows:

* At the first step, the number of classes, methods,
parameters, variables, constructor, attributes and
interfaces of each class is measured regarding OOPS
calculation method

* In the second step, the value of SLOC 13 calculated
based on metric OOPS

* At this step, parameters AVGNOC, AVGDIT, TLC
and AVGWMC are measured to calculate POPS
metric

* At thus step, the value of SLOC 1s calculated based
on POPS metric

¢ At this step, the value of actual SLOC is compared
with calculated SLOC and then it 1s specified based
on which metric, SLOC estimation has more optiunum
values, after calculating the mean magnitude of
relative error

+ The value of A, B and PM are calculated for each
project regarding project size

* The required effort in software 1s estunated by
substituting optimal values of SLOC as A, B and PM
i COCOMO|| Model

RESULTS AND DISCUSSION

Optimal estimation of source code size: In this study, 12
JAVA projects which are available as open source at
www .sourceforge net together with their APT files which
are generally the documents related to classes, attributes
and so forth, on the step of software development have
been examined. In addition, SciTools (ver.3.1) has been
used to measure and analyze the required parameters. As
shown in Table 2, the required parameters to estimate
OOPS which mcludes the number of attributes, methods,
parameters and variables of class have been estimated
using SciTools and the number of classes and the
relationship between them have been extracted from class
hierarchy file, whereby the value of SLOC has been

27

calculated by putting the value of calculated OOPS in
the optimal equation for SLOC prediction which is
represented as follow (Zhou et af., 2014):
LN (ESLOC) = 0.796+1.042 x LN (OOPS) (3)
At the next step, to estimate POPS metric, AVGNOC,
AVGDIT, TLC and AVGWMC parameters have been
calculated using the hierarchy class and ultimately the
value of SLOC has been calculated for each of them based
on the equation (Jain et al., 2014):
EKLOC = 2.857069+0.004605% POPS “)
According to Eq. 4, EKLOC represents the estunated
kilo source lines of source code. The results are shown in
Table 2. The name of projects under study 1s represented
in Column 1 of the table, an estimation of OOPS metric and
ESLOC (Estimated Source Lines of Code) value estimmated
based on OOPS metric has been represented in Column 2
and 5 and estimation of the value of POPS metric and
ESLOC estimated based on POPS metric 1s represented in

Column 3 and 6 and size of actual SLOC has been
represented in Column 4.

Optimal estimation of effort in COCOMO| Model:
According to Table 2, m the majority of evaluating
projects, ESLOC measuring based on OOPS metric 1s
closer to the real size. Therefore, we use their values in the
estimation of software effort in COCOMO|| Model and
after assigning the values of A and B based on the source
code to their size; the software effort required is
calculated according to Eq. 1. The results can be seen in
Table 3.

Comparison of COCOMO|| Model based on source code
size with previous works: In this study of the research,
we compare the proposed method with previous works.
The proposed model 13 a more optumal model than early
COCOMO| Model because the early COCOMO|| Model 15

Int. J. Syst. Signal Control Eng. Appl., 10 (1-6): 24-31, 2017

suitable for older software projects. Yet, it has faced
problems in new methods for producing software. Further,
In COCOMO|| Model (Boehm, 20009, 17 cost drivers are
used to estimate cost of software. This number and the
factors are increased m cost estimation in the inproved
model. The improved COCOMO| Model (Garg et al., 2014)
is used at the middle level those 15 extra cost drivers are
the new feature of this model than previous COCOMO||
Model. In this method, COCOMO|| Model is integrated
with the Function Point (FP) Model so as to reduce the
complexity of the model, whereby the accuracy has
increagsed in COCOMO| Model by means of ratio of
function points to Kilo Lines of Code (KLOC). But

Table 3: Optimal estimation of effort calculated in the proposed method

Project name A B ERLOC Effort
abbot-1.3.0 2.4 1.05 4104 10.57
barcodedj-2.1.0 2.4 1.05 2164 53979
fip4j-1.7.2 2.4 1.05 7569 20.1
httpunit-1.7 3 1.12 61004 299.72
jeap 3.6.2 full 3 1.12 93564 483.9
jip-sre-1.2 2.4 1.05 29172 82.87
krysalis-jCharts-1.0.0-alpha-1 2.4 1.05 18020 49,975
mx4j-3.0.2 2.4 1.05 4700 12.18
openfast-1.1.2 2.4 1.05 20389 56.89
PDFBox-0.7.3 3 1.12 49664 238.060
prevayler-2.3 2.4 1.05 8663 33.66
xBasel] 2.4 1.05 15844 66.21

Table 4: MAR and MMRE of estimated COCOMO| Model in proposed method

FP manual count and recount processes are more
expensive and more time-consuming than the automatic
count. Yet, knowing software size before producing it can
be helpful m these estimations. There are a variety of
methods to acquire software size. Yet, all of the methods
have numerous weaknesses such as mismatch with
variety types of software, hardness of calculation and
dependency on technology. Therefore, a majority of
software professors and experts have made an attempt to
find a sunple method and standards to measure modem
software. Jain and Singh (2014a, b), POPS metric has been
used to estimate source code lines in COCOMO|| Model
which has given optimal values to date. To compare this
method with the proposed method, two function
measures are used to measure the accuracy of COCOMO||
Model. MAR (Mean of Absolute Residuals) and MMRE
(Mean Magnitude of Relative Frror) are based on real and
predicted wvalues. In this study, any data point is
corresponding to a system under study. Yi is the source
code size and the amount of real effort per given point 1
y™1 18 the source code size and the amount of predicted
effort based on proposed methed and (Jain and Singh,
2014a, b), so that 1<i<12. Thus, AR, MRE, MAR and
MMRW are as follows per data point (i). The results can
be seen in Table 4 and 5.

ESLOC in Effort calculated in

proposed method proposed method
Project name Actual ST.OC Actual effort AR MRE; AR MRE;
abbot-1.3.0 4326 11.1658 222 0.0513 0.5958 0.0534
barcodedj-2.1.0 1863 4.0124 301 0.1615 0.7855 0.1703
fip4j-1.7.2 10488 28.3099 2919 0.2783 8.2099 0.2900
httpunit-1.7 70150 350.4872 9146 0.1303 50.7672 0.1448
jegap_3.6.2_full 147639 806.5410 54075 0.3662 322.6410 0.4000
jip-src-1.2 34993 100.3209 5821 0.1663 17.4509 0.1740
krysalis-jCharts-1.0.0-alpha-1 21996 61.6129 3976 0.1807 11.6379 0.1889
mx4i-3.0.2 5055 13.1558 355 0.0702 0.9758 0.0742
openfast-1.1.2 22726 63.7617 2337 0.1028 6.8717 0.1078
PDFBox-0.7.3 65494 324.5390 15830 0.2417 86.4790 0.2665
prevayler-2.3 9256 24.8288 593 0.0640 1.6000 0.3557
xBasel 26473 74.8435 10629 04015 8.6335 0.1154

MAR: 8850, 43.6566;, MMRE: 0.1845, 0.1951

Table 5: MAR and MMRE of estimated COCOMO| Model by Jain and Singh (2014a, b)

ESLOC in
Jain and Singh (2014a, b)

Eftort calculated in
Jain and Singh (2014a, b)

Project name Actual STOC Actual effort AR, MRE; AR, MRE;
abbot-1.3.0 4326 11.1658 1232 0.2847 3.3088 0.2963
barcodedj-2.1.0 1863 4.6124 1000 0.5367 2.6276 0.5697
fip4j-1.7.2 10488 28.3099 2990 0.2850 84099 0.2971
httpunit-1.7 70150 350.4872 14003 0.1996 79.2428 0.2261
jegap_3.6.2_full 147639 806.5410 56639 0.3836 337.4610 04184
jip-sre-1.2 34993 100.3209 15993 0.4570 47.4909 0.4734
krysalis-jCharts-1.0.0-alpha-1 21996 61.6129 4772 0.2169 13.9629 0.2266
mx4j-3.0.2 5055 13.1558 2055 0.4065 5.5493 0.4218
openfast-1.1.2 22726 63.7617 6726 0.2959 19.6517 0.3082
PDFBox-0.7.3 65494 324.5390 2588 0.0395 14.3910 0.0443
prevayler-2.3 9256 24.8288 2804 0.3029 23.9412 0.9643
xBasel] 26473 74.8435 5663 0.2139 15.0165 0.2006

MAR: 9705, 47.5878; MMRE: 0.3018, 0.3706

28

Int. J. Syst. Signal Control Eng. Appl., 10 (1-6): 24-31, 2017

AR, =y +y",)
+ M
MRE, = ¥y (6)
¥i
MAR = 12 AR, (7
ni=
1 n
MMRE =—Y' MRE, ®)
ni=

i=1

As shown in the tables above, MAR and MMRE in
the estimation of source code size in the proposed method
equals to 8850 and 0.1845 and 9705 and 0.3018 by Tain and
Singh (2014a, b). It could be concluded that the estimation
of source code size in the proposed method compares
to Jain and Singh (2014a, b) is closer to the real value
under the same conditions. Further, MAR and MMRE 1n
the required effort of software are calculated equal to
43,6566 and 01931 in the proposed COCOMO|| Model
and 47.5878 and 0.3706 by Jamn and Singh (201 4a, b). Also,
Garg et al. (2014) MMRE for 20 projects 1s 0.2641.
Soleimanian et al. (2015) which uses a hybrid of Genetic
algonthm with a Tabu search algorithm to calculate effort
estimates i COCOMO|| Model, MMRE 15 equal to 0.2973.
Also, Soleimanian et al. (2015) which use a continuous
genetic algorithim MMRE is equal to 0.2153 whereby it can
deduce that the required effort of software 1s closer to its
real value in the proposed method resulting in the more

0.40
0.3706

0.35 4

0.30 1

0.25 4

020 0.1951

MMRE

0.15 1

0.10

0.05 4

optimal estimation of cost and time. Further in Fig. 2, the
estimated effort based on source code size in the
proposed method, real effort and estimated effort by
Tain and Singh (2014a, b) are compared, observing that the
estimation diagram in the proposed method 1s adjusted
with the calculated real effort diagram. Figure 3 shows the
MMRE parameter measurement chart in COCOMO|| effort
estimation models. The results show that MMRE
parameter in the proposed method is much lower than the
others.

The relationship between QOPS metric and effort:
According to the results the projects under study that
there is an exponential relationship between OOPS and

- Actual effort
=+-Effort in proposed method
-k-Effort by Tain and Singh (2014)

120 -

100 4

Variables

Fig. 2: Comparison of effort estimated based on source
code size

0.2973

0.2641

0.2153

0 T T
Proposed COCOMO|| Model
method based on pops metric
(Jain and Singh, 2014)

COCOMO| Model
(Garg et al., 2014)

COCOMO|| Model COCOMO|| Model
based on genetic based on continuous
algorithm and tabu genetic algorithm
search (Soleimanian et al., (Soleimanian et al.,
2015) 2015)

Improva

Comparison

Fig. 3: Performance comparison of COCOMO)| based on MMRE

20

Int. J. Syst. Signal Control Eng. Appl., 10 (1-6): 24-31, 2017

600 1

500 1

400 -

3001

Effort

200 1

100 4

740 ¢
1367 ¢
1547 &
2800
5655
6367
8979

14962
18227
27477

Variables

Fig. 4: The relationship between OOPS metric and effort

effort of software, therefore, the required effort of
software increase in an exponential diagram by increasing
number of classes, attributes and methods m their class
diagram (Fig. 4).

CONCLUSION

Based on previous studies, projects usually last
longer than the scheduled time. So, there is no doubt that
the correct estimation of time, cost and effort used for
performing projects as well as the related affecting factors
1s an important issue. Assessment of the project size is
the first step to estimate the effort of software. Size
parameter i1s assumed as the imtial mput in most cost
estimation models mcluding COCOMO|| Model. Changing
estimations may lead to the mcrease or decrease m the
proposed budget of the project. The proposed scheme
uses the OOPS metric to decrease the errors of source
code size estimations. A parametric study on 12 Java
projects indicates that COCOMO| Model not only
provides the software development team with a suitable
estimation of the required effort for the project but also
provides more optimum values than the previous works in
which POPS metric was used to estimate the source code
size (Jain and Singh, 2014a, b). Also, there will be a better
estimation via the proposed method than the COCOMO||
Model where 15 extra cost drivers have been considered
(Garg et al., 2014) because n this model, apart from
making use of the adjustment factor in estimating effort,
the parameter of size is improved too, resulting in the
improvement of the project’s cost and time estimation.
The model also decreases the MMRE compared to the
other works. MMRE is calculated equal to 0.1951 in a
proposed scheme of COCOMO|| Model in this study and
0.3706 by Jain and Singh (2014a, b). Also, Garg et al.
(2014) MMRE for 20 evaluated projects 1s 0.2641 and by
Soleimaman et @f. (2015) which uses a hybrid of Genetic

30

algorithm with a Tabu search algorithm to calculate effort
estimates in COCOMO| Model, MMRE is equal to 0.2973.
Also, Soleimaman et al. (2015) which use a continuous
genetic algorithm, MMRE is equal to 0.2153.

REFERENCES

Antomol, G, C. Lokan, G. Caldiera and R. Fiutem, 1999. A
function point-like measure for object-oriented
software. Empirical Software Eng., 4 263-287.

Azam, F., S. Qadn, S. Ahmad, K. Khan and
AB. Siddique et al., 2014. Framework of software
cost estimation by using object orientated design
approach. Intl. T. Sci. Technol. Res., 3: 97-100.

Boehm, B'W., 2000. Software Cost Estimation with
COCOMO 1II. Prentice Hall, Upper Saddle River,
New Jersey, ISBN:9780130266927, Pages: 502.

Ceke, D. and B. Milasinovic, 2015. Early effort estimation
in web application development. J. Syst. Software,
103: 219-237.

Chalotra, S., SK. Sehra, Y.S. Brar and N. Kaur, 2015.
Tuning of COCOMO model parameters by using bee
colony optimization. Indian I. Sci. Teclnol., Vol. &,
10.17485/13st/2015/v8114/70010.

Chen, Y., B'W. Boehm, R. Madachy and R. Valerdi, 2004.
An empirical study of EServices product UML, sizing
metnics. Proceedings of the International Symposium
on Empirical Software Engineering ISESE'04, August
20, 2004, IEEE, Redondo Beach, California,
ISBN:0-7695-2165-7, pp: 199-206.

Chu, X, 2016. Improving estination accuracy using better
similarity distance in analogy-based software cost
estimation. Master Thesis, Uppsala University,
Uppsala, Sweden.

Dio, WL, LF. Capretz, AB. Nassif and D. HO, 2015. A
hybnd intelligent model for software cost estimation.
I. Comput. Sci., 9: 1506-1513.

Garg, K., P. Kaur, 8. Kapoor and S. Narula, 2014.
Enhancement in COCOMO model using function
point analysis to increase effort estimation. Intl. T.
Comput. Sci. Mob. Comput., 3: 565-572.

Tain, S. and R. Singh, 2014a. Predictive Object Point
metrics (POP): A better size estimator for QO
software. Intl. J. Adv. Software Eng. Res. Method,, 1:
59-62.

Tain, S., V. Yadav and R. Singh, 2014b. An approach for
OO software size estimation using predictive object
point metrics. Proceedings of the International
Conference on Computing for Sustainable Global
Development (INDTACom), March 5-7, 2014, TEEE,
New Dellu, India, ISBN:978-93-80544-10-6, pp:
421-424.

Int. J. Syst. Signal Control Eng. Appl., 10 (1-6): 24-31, 2017

Jain, 8., V. Yadav and R. Singh, 2014. A simplified
formulation of Predictive Object Points (POP) sizing
metric for OO measurement. Proceedings of the [EEE
International Conference on Advance Computing
(IACC), February 21-22, 2014, IEEE, Gurgaon, India,
ISBN:978-1-4799-2573-5, pp: 1367-1372.

Jolnson, K., 1998. Software cost estimation: Metrics and
models. Master Thesis, Umiversity of Calgary,
Calgary, Alberta.

Jorgensen, M. and D.I. Sjoberg, 2004. The impact of
customer expectation on software development effort
estimates. Intl. J. Project Manage., 22: 317-325.

Jorgensen, M. and M. Shepperd, 2007. A systematic
review of software development cost estimation
studies. IEEE Trans. Software Eng., 33: 33-53.

Leung, H. and Z. Fan, 2002. Software Cost Estimation. In:
Handbook of Software Engineering and Knowledge
Engineering, Chang, SK. (Ed.). World Scientific,
Singapore, [SBN:981-02-4514-9, pp: 1-14.

Mittas, N., I. Mamalikidis and L. Angelis, 2015. A
framework for comparing multiple cost estimation
methods using an automated visualization toolkit.
Inf. Software Technol., 57: 310-328.

31

Mittas, N., M. Athanasiades and 1. Angelis, 2008.
Improving analogy-based software cost estimation
by a resampling method. Tnf. Software Technol., 50:
221-230.

Pfleeger, S.I.., F. Wu and R. Lewis, 2005. Software Cost
Estimation and Sizing Methods: TIssues and
Guidelines. RAND Publisher, Santa Monica,
California, ISBN:0-8330-3713-7,.

Saez, AMF., M. Genero, D. Caivano and M.R. Chaudron,
2016. Does the level of detail of UML diagrams affect
the maintainability of source code?: A family of
experiments. Empirical Software Eng., 21: 212-259.

Soleimanian, F., F.S. Gharehchopogh and A. Pourali, 2015.
A new approach based on continuous genetic
algorithm in software cost estimation. J. Sci. Res.
Dev., 2: 87-94.

Xu, 7. and T.M. Khoshgoftaar, 2004. Tdentification of
fuzzy models of software cost estimation. Fuzzy Sets
Syst., 145: 141-163.

Zhou, Y., Y. Yang, B. Xu, H Leung and X. Zhou,
2014. Source code size estimation approaches for
object-oriented systems from UML class diagrams:
A comparative study. Inf. Software Technol., 56:
220-237.

	24-31_Page_1
	24-31_Page_2
	24-31_Page_3
	24-31_Page_4
	24-31_Page_5
	24-31_Page_6
	24-31_Page_7
	24-31_Page_8

