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Abstract: The use of the optimization technologies for the two degree of freedom control for Robot
manipulators is a new idea and there have been applied various methods for controlling and optimizing robots.
The general theorem in such optimization methods is the determination of the decision variables amounts for
maximizing or minimizing the objective function and this 1s a very tedious task when the number of membership
functions 1s too many or the system dynamicity 1s very slow. In the present study, the optimized output
membership functions have been identified through combining the genetic algorithm and fuzzy logic, based on
the input membership functions for two degrees of freedom control robot manipulators. The method has been
the use of genetic algorithm for finding the optimum parameters mn the Sugeno Fuzzy Logic Method. The
objective function in such a problem 1s in the form of a system of various objectives and goals of two degrees
of freedom controls for robot manipulators. The main objective of the current study is to make use of a Genetic
algorithm method to mechanize the design and reach to an optimum regulation of the membership functions and
therefore the scientific considerations regarding the regulation and design through the use of scaling
coefficients along with the fuzzy control for the two degrees of freedom controls for robot manipulators have
been presented here.
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INTRODUCTION

The robotics system is currently being
extensively used mn the industry and there has been found
a variety of usages for such systems application, among
which one can refer to the use of robots mn the automatic
production lines, vehicles loading and unloading such as

arms

airplanes and ships, automatic pamting, radioactive
substances handling, deep-sea probes, space trips and
military applications. Moreover, robotics arms or
manipulators make use of completely nonlinear and
complicated systems. Such systems do not possess a
fixed and stable structure due to various reasons such as
loading variations and/or friction between the arm joints
and there is always present a sort of uncertainty in them.
The uncertainty existing in the robotics arms can bring
about mstability in the system performance and make
controlling job difficult. For the same reason, many
various types of controllers have been designed for
such systems. Among the controlling methods the fuzzy
control method 1s very practical and efficient. Fuzzy
logic which is based on fuzzy systems has been invented

by Zadeh (1975) to handle the uncertamty and the
imprecision existing in the knowledge and sciences. A
fuzzy system makes use of fuzzy sets to describe the
relationships mapped between the mput and the output.
Fuzziness of the complexes makes it possible for the
output to be interpolated from among several theorems
and a smooth and continuous output can be created from
a combination of discontinuous theorems and rules. The
evolutionary algorithms are basically considered as the
searching algorithm-functions optimizations and they can
be exerted on a wide range of the problems in which there
1s given a function but the decision variables optimizing
the function are mdefinite. Such problems include
engineering optimizations, schedule  planning,
bicinformatics, developable hardware and even art.

MATERIALS AND METHODS

Robotics arms systems model: The n-degrees of freedom
robotic arm dynamic equation can be expressed in the
form of a quadratic non-linear equation by making use of
Lagrange or Newton-Euler Method:
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Fig. 1: The two-jomt robot arm

T=M(@q+Cg, Pg+G (@=W(g. ¢ o (1)
Where:

W(q. g. §) = A definite function of the robot
dynamics
0] = A vector including the uncertain

parameters for the robot dynamics
q=[qs ... g]" = The robot joints positions vector

q=[g - a.l >

d =[d,>»d,]" = The velocity and acceleration vectors,
respectively
M(q) = A (nxn) mertial matrix

C(d. 4) = The (nxn) Coriolis and centrifugal
forces

G(g) = The nx1 gravity vector

M(q) = A symmetrical, positive and definite
matrix

The two-jomnt robot arms have been illustrated n
Fig. 1. As it 1s observed in the figure q; 13 the position of
the first joint to the horizontal line and g, is the position
of the second joint to the first one. The two-joint robot’s
dynamic equation is in the following form and it has been
proposed in many of the articles and references:

T, = mzlg(th + g, )+ my L le, (24, + 4,0+ @y + m, )112 4
-1, 111232612 '2m2 111252q1(-h +m, lzgcm + (m1+ 1, )11g01
T, =m,ll,c.q, +m, lllzsqu2 +m,lge, + mzli(&jl +4q,)
(2)
The above equations are of a general format

according to the relation for which M(q}. (4. 4) and G{(q)
matrices can be written as below:

Miq) = (m, + m, )1122+ m,lZ +2m,llc, mli+ m22111202
m,l; +m,lLc, m,l;
Clq ) = {'mzllllll-élzsz 'm21111(-hsz:|
m,l1q;8, 0
Giq) = |:(m1 +m,)gle, + ng12C12:|
myglc,

3)
where in Eq. 3:

¢, =cos(q,), ¢, = c0s(q, ), 8, = sinq, ),

8, =sin(q,), ¢, =cos(q, +q,)

And m, and m, are the arms masses and 1, and 1, are
the lengths of the arms and g is the earth gravitational
acceleration. Also, if the m, can be considered as the
movable load acting on the second arm and it can be also
regarded as concentrated on the ending point of the
second arm, then the system model can be introduced as
the relation with the following matrices:

M M
M(q)= { 11 12} ()
MZI MZZ
C C
C(q, §) = 1 12 (5)
(q, q) {cﬂ 0 }
G-
q G,
Where:
M,, = (m, + m, + m,)} +{m, + m, 1} + 2{m, + m, )1 1,c,
M, ={m, +m,)l +(m, + m,)ll.c,
MIZ = MZI
M, ={m, +m, )1;

G, =-2(m, + m;)11,q,8,
C,, =-(m, + m,)l 1,4,
C, =(m,+m,)llqds,

G, =(m, + m, +m,)glc, +{m, +m,)gl.c,
G, = (m, +m,)gl,c,

(6)
Fuzzy control: To overcome the need to describe
sciences with certainty, the fuzzy sets were introduced by
Zadeh (1965) which allowed for the possibility to make
use of the logical approximate forms in such a manner that
the terms “right” and “wrong” mcluded part of reality.
Ten years later, Zadeh generalized such fuzzy sets and
systems to the known fuzzy systems entitled type 2 fuzzy
systems to model the uncertainties which can be
manifested m desigmng the type 1 fuzzy systems
(Lughofer, 2011; Mendel, 2001).

During the past decade, fuzzy logic has been
successfully applied in various fields such as regression,
system modeling, pattern classifications and so forth.
Among such usages, the area of control can be regarded
as one of the most relevant one.

FLCs (Fuzzy Logic Controllers) have three main
compoenents such as fuzzification, fuzzy mferential engine
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Fig. 2: The structure of a fuzzy logic controller

and defuzzification. The FL.C block diagram has been
llustrated m Fig. 2. The first block 1s defined m the
fuzzification section of the fuzzy system for the input and
output variables. Tn most of the cases, the output error
that 1s to say the differential between the process output
and the reference signal and the variations or its
derivatives form the inputs to the fuzzy system. The base
is indeed the heart of the fuzzy system and it contains the
rules and the criteria by the use of which the controllers
can be capable of actualizing the objectives. Usually, such
rules and regulations are expressed in the “if, ..., then”
format and they act as the mapping between the input
fuzzy variables to the output fuzzy wvariables. The
mnference engine can be regarded as the brain of a fuzzy
controller which has the ability to imitate the human
decision making methods based on fuzzy concepts. This
part has to be made based on the databases, fuzzy mputs
and outputs. In defuzzification, the actual value of the
output 1s firstly obtained. There are various methods for
defuzzification the most common and most widely used
one of which 1s the gravity center.

Through the use of the fuzzy logic definitions we
make practical use of a two-input-one-output fuzzy
system to control each of the robotic arms. The system
inputs are error that is the extent to which the actual angle
deviates from the optunum and the error derivative,
respectively. The output, as was expected is the amount
of the torque mputted to the jomt. To simplify the fuzzy
system, the zero-order Sugeno fuzzy system has been
applied. This system is similar to Mamdani-type fuzzy
mnference system to a great extent except that the
membership functions are replaced by the single values in
the output part.

The membership functions which have been
considered for the input variables to both of the fuzzy
controllers are of the Gaussian type according to the
following figures and both have been normalized in [-1, 1]
space (Fig. 3 and 4).

The membership functions have also been
considered on the output dimension in the form of single
values umformly in [-1, 1] space according to Fig. 5.

1 08 06 -04 02 0 02 04

06 08 1
Input variable (ER)

Fig. 3: Error membership fimctions
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Fig. 4: Error derivatives membership functions
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Fig. 5. The membership functions for the output variable

The fuzzy system inputs are firstly fuzafied
according to the membership functions which have been
taken into consideration for them and then the inputs are
approximately deduced according to the collection of the
rules and regulations which have been considered for the
fuzzy system and the fuzzy system produces the mtended
output.

Since, the controller has two approaches and each of
them has five membership functions, so one perfect rules
database 1s comprised of 25 rules for such a system. The
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Fig. 6: A schematic view of the controller system in MATLABR’s simulink

Table 1: Fuzzy rules database

[ NB NO 88 PO PB
NB NB NB NO NO S8
NO NB NO NO 88 PO
S8 NO NO 88 PO PO
PO NO S8 PO PO PB
PB S8 PO PO PB PB

rules database which has been considered here is a
standard rules database which has been taken into
consideration in the majority of the articles as the
controller which is visible in Table 1.

A general schematic view of the controller system
which has been executed in Simulink of the MATLAB
Software can be observed shown in Fig. 6.

The important theme of the schema is the use of the
scaling factors and they cause the variables e and &
which have been regarded as the inputs to the fuzzy
system to be spaced well mn the [-1, 1] range. Another
point of value here is the use of MATLAB FCN which
takes advantage of an m-file named “dyn.m” and that the
section 5.3 robotic equations have been implemented in it.

GA optimization algorithms: Genetic algorithms are a
known set of EAs. These algorithms are currently being
widely used in a way that sometimes genetic algorithms
expressions and the evolutionary calculations are being
used interchangeably (for instance in the present
article). Such algorithms work with a fixed population
of the individuals (chromosomes) and each of these
chromosomes provide for a likely solution to the assigned
problem. In each reproduction, the individuals are codified

and then a fitness score is specified for each of them
based on which one(s) solves the problem better
than the others. The individuals with appropriate
selection likelihood to individuals™ goodness of fitness
ratio can be selected for the next generation production.
After the selection process was ended, a blending takes
place between the pairs of the selected individuals. The
two individuals’ strands get combined, through the
process of which a new individual is produced which is
characterized by the traits inherited from two different
farrly successful individuals. The next operation in the
line is mutation; stochastic selection of the bits from
chromosomes. This event usually takes place with a
relatively low likelihood. Mutation makes it sure that the
likelihood with which an existing section of the response
space can be searched is never zero.

An introduction to the GFSs: As it was mentioned
previously, designing a FS includes two stages: the
selection of the system structure that 1s the rules
and regulations in the rule base and defining the
correct parameters (or the database) which means the
antecedents, consequents, language variables and so
forth. Therefore, manual designing and regulation of a FS
is a very difficult task, especially when the number of the
MF parameters increase. The automatic identification of
the fuzzy system or structure parameters can be regarded
as a search or optimization process (Cordon, 2011).
Corresponding to the great number of the parameters
which should be specified in a FS the size of the search
space is relatively very huge. To the same reason, we are
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Fig. 7: Genetic fuzzy system architecture

in need of powerful search methods capable of managing
the spaces with huge dimensions. At the present time, the
evolutionary algorithms have been recognized as the
general effective and competent search techmques for
this set of the problems. The swvey of the histories
indicates that the pertinent and outstanding evolutionary
fuzzy system types include genetic leaming or the
regulation of numerous components of the fuzzy
rule-based systems (which are usually named Genetic
Fuzzy Systems or GFS).

Genetic Algorithms (GAs) have been used with
various complexity levels, from the membership function
regulation to the production of fuzzy theorem which
includes both regulation and training (Cordon et al., 2004,
Bonarini, 1996).

GFS architecture has been shown m Fig. 7. S genetic
design includes knowledge-base parameters encoding in
an appropriate genetic format. At the time that the
knowledge base 1s optimized the fuzzy process can start
working as a standard fuzzy system through calculating
the outputs.

Fuzzy genetic system can be divided into two
general approaches in a broad sense: genetic regulation
processes and genetic learmng processes (Cordon et al.,
2004; Bonarini, 1996).

Genetic regulation processes have been defined as
the FRBS (Fuzzy Rule-Based System)
performance optimization procedure and they are used
through regulating the DB (membership functions and/or
scaling factors) parameters. Therefore, the main objective
of the optimization procedure is the regulation of DB
parameters and the rule base is left inchanged during the

previous

Fuzzy processing

)

Tuning process I

Evaluation
module (DB)

Predefined RB DB

Fig. 8: Database regulation and tuning

regulation process. The genetic learming processes are
influenced by automatic production or optimization of a
set of fuzzy rules which develop the input and output
states interrelationships.

Genetic regulation: Scaling and fuzzy membership
functions regulation 1s a major task m the process of
designing the FRBS. The scaling factors and the
membership functions are adjusted by the GA based on
fitness function which quantitatively specifies the design
criteria. As it was stated previously, regulation processes
assume a predefined DB and their objective would be
finding a set of optimized parameters for the membership
and/or scaling functions (Fig. 8).

In the primary task which was fulfilled regarding the
genetic regulation (Karr, 1991) took the linguistic FRBs
into consideration. The DB definition is encoded in the
chromosomes which includes a series of fuzzy systems
input and output parameters.
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Scaling functions regulation: The scaling function which
is operated on the FRBS input and output variables
normalizes the space mn which the fuzzy membership
functions have been defined. It 1s possible to parametrize
the scaling functions and then they can be adjusted to the
GAs. Such parameters are adjusted in a manner that the
scaled space can be better corresponded to the variable
limits. Usually, the scaling functions which have been
used in the history can be divided into linear sets which
have been given in the article proposed by Ng and Li
(1994) and non-linear sets which have been offered m an
article authored by Magdalena and Monasterio-Huelin,
(1997).

Membership functions regulation: The fuzzy systems can
be defined by the use of local or general semantics. For
the local semantics, each of the fuzzy systems in each of
the theorems has its own specific membership function.
For the general semantics in the article proposed by
Chien et al. (2002), the defimtion of the membership
function is shared between the theorems and they are
iteratively used. The general semantics make the explicit
1solation of the membership functions from the rule base
possible and this enables the learning algorithms to target
one or both of them.

The simplest method for making use of GA to
umnprove fuzzy system 1s to start with an existing system
and optimization or adjusting the shape and the position
of the membership functions. Regulation or tuning is one
of the preliminary applications considered for GA in fuzzy
systems and this 13 due to the simplicity and the high
number of the previously existing fuzzy systems which
can be regulated through following this procedure.

When regulating the membership functions, an
individual defines the entire DB as its own chromosome
which the relevant parametrized membership functions
can be encoded through the use of linguistic phrases in
each fuzzy section of the FRBS. The most common
membership functions shapes (in GFRBS) are triangular,
trapezoidal or Gaussian functions ones. The number of
the parameters per membership function usually ranges
from 1-4 and each of the parameters is encoded in a binary
or actual format (Liska and Melsheimer, 1994).

A specimen of the creation of the chromosomes (the
actual encoded strands) for a fuzzy system with three
throughputs has been illustrated in Fig. 9. Every input has
two Membership Functions (MF) which 1s related to it and
both are Gaussians. The Gaussian membership functions
can be described with two parameters: a median amount
and a width amount. Gaussian membership functions are
usually used for the reason that they are continuous,
derivable and simple to describe. Considering the fact that

Inputs
Membership

functions

Chromosome|C,_,|O'u|C- 2|CYy zl(‘/:-lU:lezzlG::le1|6; |C3;3|5<.:|

Fig. 9: Gaussian MF encoding

the rule base is left unchanged and there is a rule for
every combination of the membership functions a
chromosome as simple as such a vector is one of the MF
parameters.

Rule base genetic learning: The main problem which 1s
needed to be solved for FRBS learming includes finding
a proper description which is capable of collecting
the problem specifications and offering potentially
appropriateness responses for it. Classically, three genetic
learming approaches correspond to the machine learning
system grounds and are therefore applied.

Pittsburgh approach: In this approach, every
chromosome describes a general RB and the evolution
takes place through the genetic operators which are
exerted on the fuzzy rules sets level. The fitness function
FRBS precession which has
completely encoded m a chromosome. In the study
proposed by thrift (1991) the first major step n Pittsburg
approach 18 the RBs learming. This method works through
taking advantage of a complete decision table which
characterizes a certain case in crisp relations and it is
defined in contrastive fuzzy systems with mput and
output variables. A chromosome of each of the decision
table 1s obtammed from each of the lines and through the
codification of each fuzzy system output in the form of a
number which incorporates a label “null”. Therefore, GA
applies an integer encoding method.

evaluates the been

Michigan approach: In this approach the chromosomes
are regarded as single fuzzy rules and the RB 1s described
by the entire population. The set of the fuzzy rules are
adjusted during the course of tume through the use of
some of the genetic operators exerted m every level
of the single rules. This evolution 1s conducted via a
credit allocation system which evaluates each of the
single fuzzy rules correspondence. In the study performed
by Valenzuela, the first GFS for RBs learning has been
offered based on Michigan approach.

Tterative Rule Learning approach (IRL): In TR, the same
as Michigan approach, every chromosome m a population
describes a wnique single fuzzy rule but 1t is regarded as
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the best individual for the final part of RB. Therefore,
mn this approach, EA provides a partial solution to the
learmng problem and it stands in contrast to the two
previously mentioned approaches. This approach has to
be run iteratively to obtamn a complete RB. Thus 13 carried
out in this way that it mcludes an iterative plan based on
obtaining the best current fuzzy rule for each of the
systems which gets this rule participated in the final RB
and it punishes RB before repeating the process. This
procedure finishes when the RB is no longer capable of
properly describing the system.

RB genetic learning considers a collection of
predefined membership functions which are located in DB
and the rules are being referred to through the use of
linguistic labels (Fig. 10). And this s only implemented on
the general semantics (descriptive semantics) in such a
mamner that in local sementics (approximate FRBS)
rule adjustment 1s regarded as equal to the membership
functions improvement. Three aforementioned learming
methods can be considered for RBs training.

The Michigan approach presented in references
(Bonarini, 1996; Tshibuchi et al., 1999, Subbu et al., 199%),
the Pittsburg approach introduced in the reference articles
(Thrift, 1991; Hoffmann and Pfister, 2013; Pham and
Karaboga, 1991) and the iterative rule learning approach
m the reference articles (Gonzblez and Perez, 1999,
Cordon ef al., 2001 ) regarding RB can be described via a
relational matrix m reference (Thrift, 1991), a decision
table (Pham and Karaboga, 1991) or a list of the rules
(Hoffmann and Pfister, 2013; Pham and Karaboga, 1991,
Gonzblez and Perez, 1999).

Knowledge base genetic learning: When using a rule
base with local semantics, the membership systems
and rules are inseparable and they should be trained
altogether. Alternatively, general semantics enables the
membership function to be trained independently from the
rules and vice versa or they can be trained together. There
are two ways for both of the membership functions and
rules learning; sequential or simultaneous.

Learning process

Evaluation
module (RB)

\

Predefined DB RB

Fig. 10: Rule base learning

In the sequential learning approach, firstly the scale
factors should be found by the GAs and the membership
function and rule base are supposed to be fixed. When
the GA succeeded in finding the best scaling factors
coefficients values, such parameters become fixed and the
membership functions parameters are processed by GA.
Finally, through the use of scale coefficients and
membership functions a new rule base is found out by
GA. Since, the various components of the fuzzy systems
(RB and DB) are not independent from one another
such approached may lead to a generally suboptimum
performance. In fact, through changing a parameter of a
fuzzy system some of the other parameters change as well.
In sinultaneous approaches, both of the DB and RB of
the fuzzy systems in one chromosome are encoded to
obtain a better performance.

For mstance, Homaifar and McCormick (1995)
suggested the use of GAs for a perfect KB learming for
controllers problems which describes both of the
membership functions and RBs for the purpose of
addressing their correlation (KB learning). They
considered a simple GA for Pittsburgh approach
accompanied by a numeral encryption for the rules
consequences and numeral encoding for the membership
function domain (5 different domain values) in an identical
chromosome. This approach is regarded as a reference for
the classic Pittsburgh approach to KB genetic learning,.

RESULTS AND DISCUSSION

In the following study, we deal with the controller
optimization results by the use of the genetic algorithm. In
the current article we made use of genetic algorithm for
the optimization of the centers and the extensions of the
membership functions on the input and the fuzzy rule
consequent values and scaling coefficients. To optimize
the controllers there can be made use of various scales. In
the current study, however, we made use of Mean Scquare
Error (MSE) of the system as the objective function.

As 1t was mentioned previously, since our fuzzy
system has five membership functions on each of the
input dimensions (and therefore we have 20 free
parameters to be optimized) and five consequences on the
output dimensions (5 parameters), so we have 25 free
parameters for each of the fuzzy systems to be described
and quantified. Consequently, it can be stated that the
chromosomes are comprised of 56 dimensions in genetic
algorithm. So, we have chosen to set the iteration stages
number equal to 60 and the number of the population has
been selected as equal to 15 individuals. In the study to
come we deal with the controllers” optimization via the
genetic algorithm by taking advantage of scaling
coefficients and Baun Genetic algorithm and also we have
made use of genetic algorithms, the results of which have
been presented in figures.
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In the present study, we made use of the presented
algorithm to optimize the centers and the extensions of the
membership functions on the input dimensions and the
fuzzy rule consequences values and scaling factors. To
optimize the controllers we can make use of various
scales. In the present study, we have made use of mean
square error as the objective function.

Below the objective function diagram has been given
based on the number of the algorithm iteration stages
for each of the algonithms for comparison purposes
(Fig. 11-13).

As it is evident from the Fig. 11, we have made use of
scaling coefficients in GFS and it indicates better final
optimization values in comparison to the ordinary genetic
algorithms. Another considerable theme in this figure
is that the genetic algorithm firstly follows a more
accelerated reductive procedure and it does not indicate
an acceptable procedure after the tenth iteration in
figuring out the better responses. But, the GFS controllers
indicate a better performance and efficiency respective to
the GA-FL.C controllers.
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Fig. 13: The comparison of the reference detection for the
three controllers (second joint)

Table 2: The control scales comparisons for the first joint

GF8 GA-FL.C FLC Jointl
0.215 0.405 0.853 ITAE
0.112 0176 0.392 IAE
Table 3: The control scales comparisons for the second joint

GA-FLC PSO-FL.C FLC Joint 2
0.045 0.063 1.806 ITAE
0.066 0.076 2.681 IAE

In the end, to precisely compare the controllers’
performances we have made use of ITTAEl and TAE2
which are scales for detection errors through taking
advantage of MATLAB mstructions and they have been
reported in Table 2 and 3. The reported values in Table 2
and 3 indicate that the GFS controllers outperform the
other controllers regarding ITAE and TAR scales.

CONCLUSION

In the present study firstly we dealt with the survey
of the fuzzy systems and i a separate chapter we
handled the discussions regarding such systems and their
advantages and disadvantages were also presented. The
most important advantages regarding the fuzzy controllers
are;

»  The fuzzy logic 1s very tangible and understandable
mtuitively. Since, 1t umitates the human controlling
strategy and its basics can be easily understood for
the non-specialists

s Ttis flexible and changes can be made with ease

»  Itis durable against imprecision and uncertainties

» It can be made by the use of the specialists’ latest

experiences and knowledge (regarding the
processes)

s  Fuzzy controllers are based on the natural human
language and therefore they can be easily

understood and they have the capacity to be applied
m parallel to the traditional control systems
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¢« Tt allows you to introduce your own system by
making use of simple expressive rules and so
there is no need for the complicated mathematical
formulas

¢+ Using the membership function and rules, the
continuous functions can be approximated by any
arbitrary approximation degree

*  Regarding the nonlnear systems, it 1s more superior
to the nonlinear controllers since it is closer to the
system’s real model

« It 1s less expensive in respect to the traditional
controllers. Since, fuzzy controller can be easily
understood, the method learning time 1s very
short that means that the “software costs” become
smaller

But, according to the advantages cited above the
fuzzy systems suffer from one thing and that is the need
for a specialized expert mn fuzzy system desigming for
every specific field of application. As it was stated
previously, fuzzy controllers tuning and regulation
including the membership functions for controlling certain
systems 15 very tme-consuming and labor-intensive
task. To solve such a problem various methods have been
created. One such method is the use of evolutionary
algorithms in tuning and optimizing the fuzzy controllers
and this was thoroughly discussed in section four which
contains firstly a general overview of the discussion and
then it specifically deals with the genetic algorithm details.
Afterwards, it was dealt with the introduction of the most
popular types of the fuzzy systems via the evolutionary
algorithms that is the fuzzy genetic algorithms and the
various methods of mixing the fuzzy systems with Genetic
algonthms were surveyed. In the end, the two degrees
of freedom controls for robot mampulators’ equations
were 1mplemented on MATLAB and then the tuning
and optimization of the fuzzy controllers for the
robotic arm system was handled by the use of Genetic
algorithm.

The results obtained in the present study by taking
advantage of the fuzzy genetic algorithm are acceptable
and the
accomplished the jomnt reference pomt detection. In the

optimized fuzzy controllers have well
meantime, it was shown that the optimized controllers by
the genetic algorithms provides for a better set of results.
Finally, the three controllers” efficiency were compared
from the perspective of the two popular and common
control scales and the results were tabulated m the above

tables in the present study.
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