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Fuzzy Control of Flexible Serial Robots with Neural Tuner
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Department of Mechanical Engineering, University of Shahrekord, Shahrekord, Tran

Abstract: In this study, trajectory tracking control of planar serial robots with the last flexible arm is studied.
The EOMs are derived using Lagrangian mechanics and the assumed modes method. The robot has a fuzzy
controller with neural tuner. The control system consists of a fuzzy logic controller in the feedback
configuration with error and change in error of the jomts angular as mput variables. Set parameters of
membership functions of inputs in fuzzification and output in defuzzification are fuzzy control challenges.
Utilizing a three-layer perceptron neural network a new method to estimate the on-line self-tuning parameters
of the membership functions 1s presented. In this method, symmetric triangular membership functions are used
i fuzzification and defuzzification umts. Each of them 15 function of a productive parameter which 1s calculated
on-line using neural network. The network inputs depending on which membership function is set, can be
deformation, joint angular error or its derivative. The back propagation learning algorithm is used to update the
network weights and the biases. To validate the proposed method simulation 1s done and the results are
mvestigated.
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INTRODUCTION

Utilization of rigid and massive components to
mitigate vibration and improve the accuracy of robots
results in ligher operating and manufacturing costs.
Moreover, high inertia and vibration during rapid
movement would limit their operating speeds. Using light
arms not only improves efficiency but also increases
safety and speed of operation. Other advantages include
need for smaller actuators, achieve higher maneuverability
and easy transportation, assembly and installation.
However, lighter and more slender arms are more
deformable. This would make target tracking more
challenging and would introduce residual vibration that
needs to be dissipated after the target is met (Yue et al.,
2002).

The vibration mitigation of robots without comprising
their response time and load capacity is an interesting
subject for the researchers (Karami et al, 2014). The
design of high performance robots using the traditional
controllers requires an accurate dynamic model. Inversion,
adaptive, robust and sliding control strategies are among
some traditional methods (De Touca et al., 1989; Lee et al.,
2001; Caracciolo et al., 2005, Zhang et al, 2004). The
derivation of the equations of motion of flexible robots
often requires complicated calculations. These equations
are either too bulky or not accurate due to simplifying
assumptions. The dimensional

model of such

robots, because of their nonlinear nature, 1s mfimte.
Also non-minimum phase of such systems leads to
Moreover, in the
estimation of the system characteristics, time-varying
nonlinearities such as those due to friction forces or
moments, actuator saturation effects and sometimes
uncertainties in nonlinearity sources make traditional
control strategies ineffective in designing an optimum
system with low vibration and high operating speed (Qiu
et al, 2015; Korayem et al, 2014; Alam and Tokhi,
2008).

Fuzzy control i1s an intelligent method that its
important advantages mclude the ability to use the
knowledge of expert in the system control and its
robustness due to insensitivity to changes in the
envirorment (Matia ef al., 2014). Although, fuzzy control
techniques do not require an accurate dynamic model,
they require a mathematical model to predict the system
response in linguistic terms as fuzzy role base uses the
expert knowledge (Lochan and Roy, 2014). The use of
fuzzy logic in robot controls was started from 80s and in
90s was extensively used to study flexible robots (Wu and
Tzou, 1993, Wang and Li, 1997). Huang and Lee (2000)
presented a self-orgamzing FL.C for the position control of
a robot.

Mirshekaran ez al. (2013) uwed a PID type sliding
mode modified fuzzy controller in which the gains were
adjusted using fuzzy logic to reduce the tip vibration.

under-actuated conditions. erTors
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Mallikarjunaiah and Reddy (2013) used an adaptive
neuro-fuzzy which consisted of two subsystems. One of
them to control desired position and the other one to
reduce vibration. Abdullahi et al. (2013) designed a model
based pole placement and fuzzy FLC controller. They
comprised trjectory tracking and vibration responses
between the two methods. Sahamijoo er al. (2015) used
PID like FL.C controller with three inputs P, D and I. They
used N linguistic variables to describe the system’s
behavior. They compared their results with PID controller
using simulation. Tian and Collins (2005) used a
neuro-fuzzy control scheme which consisted of fuzzy
controllers and two neural networks. One of which was
used for identification and prediction of the output and
the other for tuning of the gain factors in the PD controller
of the fuzzy role base. They validated their approach by
experiments.

One of which was used for identification and
prediction of the output and the other for tuning the gain
factors of the PD controller of the fuzzy role base. They
validated their approach by experiments. Meza et al.
(2012) improved the performance of a robot using a
self-tuning fuzzy controller by updating the gain factors
of the PID controller of the robot based on the its actual
state.

The rules and the membership functions of fuzzy
controllers are not usually modified after they are
selected. In this study, a novel approach is presented
which utilizes neural network for tuning fuzzification
and defuzzification membership function parameters of
PD-type fuzzy controller.

In the study, the proposed method is described.
Then, the equations of motion of the robot are derived
using Lagrangian mechanics and assumed mode
methods (Meirovitch, 1967). Fuzzy controllers with
membership functions that are tuned using neural network
are presented and finally a simulation is performed and the
results are discussed.

Proposed approach: To build PD and PID-type fuzzy
controllers, most researches have focused on tuning P, D
or I gain factors by employing neural networks or
evolutionary algorithms (Mirshekaran er al., 2013;
Mallikarjunaiah and Reddy, 2013; Meza et al., 2012).
Nevertheless, intelligent fuzzification and defuzzification
sections have rarely been the subject of studies. This
paper focuses particularly on building intelligent
membership functions for those sections. To this end,
symmetric triangular membership functions are used
where it is a function of an individual productive
parameter. The membership functions would depend on
the selection and the design of this parameter. Three layer
perceptron neural networks are used to build an intelligent
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productive parameter. To achieve our goals, reducing
vibration and error in joints, we consider the cost function
as a sum of the squares of the error, the derivative of error
and the elastic deformation. We consider three networks
for each arm, one network for the membership function of
error, another one for the change in the error in the
fuzzification and lastly one network for the membership
function of the output torque in the defuzzification. The
error, its derivative and the elastic deformation can be
considered as inputs depending on the network
application. Then, an adaptive weight learning algorithm
is specified by the generalized delta rule (Rumelhart and
McClelland, 1986). In this method, the weight and bias
vectors are updated in the direction of negative gradient
of the quadratic cost function for its minimization.

MATERIALS AND METHODS

Application: In this study, the application of the proposed
approach is presented. Figure 1 demonstrates an N
armserial robot in which the last arm is flexible. The hub
mass, generalized torque and revolving angle at joint i are
denoted by M,, 1, and 6,, respectively. M and yi(xy, t) are
the payload mass and the elastic lateral displacement on
the last arm that is x apart from point O, respectively.
The XOY is an inertial coordinate frame with its origin at
the hub and x,0;y; are moving coordinate systems with
their origins associated with the ith joint.

The flexible beam is a Euler-Bernoulli Beam in which
the effects of shear deformations and rotational inertia are

Yz, 1)

Y

Fig. 1: Flexible serial robot with load
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ignored. Since, the arms and the hubs are located on the
horizontal plane, we can assume the deformations are also
horizontal and the effects of gravity can be ignored.

Utilizing the assumed modes method, the bending
deformation of the flexible beam 1s considered as a linear
combination of the natural modes and the time-dependent
harmonic functions. Therefore, we have:

W(XN’t):Z(Dj(XN)\NJ(t) (1

where, {(x,) are the normal modes and Wi(t) is the
time-dependent function. The value of the normal modes
for the flexible arm with a payload at one end is specified
as follows (Rao, 2007):

(%) = (cosf, x, —coshP x, )~
cosfi; 1, —coshfi,1
sinf3; 1, —sinhf3;1

(2)

il (sinf, x,; —sinh 3, x;)

N

where, [, are the first vibration frequencies of the flexible
beam which are obtained using Eq. 3 as follows:

M

I+cosP 1, < coshf 1, ——PB,1, %

m, (3
(sinh 3,1, x cos 1, —sin i, 1, < cosh 3, 1,) =0

where, 1, and m,;, denote the length and the mass of the
flexible arm, respectively. Also w; are natural frequencies
which are obtained as follows:

o, = Enly : (4)
PrAy

The total kinetic energy of the robot would be the
summation of the kinetic energy of the arms, with those of
the hubs and the payload:

1
p, A, RTR.dx, +EmR;Rm +

138 L
T_EEL L ] 2 (5)
Eé(mM,iRM,iRM,i-FIMJmMJ)

Where:

RM,i: (J‘)M,n

my, and I, = Position vector, angular velocity, mass
and the moment of iertia of motors at
joint 1, respectively

R andR,, = The position vector on the ith arm and the
payload to imtial frame OY

P A = The density and the cross section of the

arms at joint 1, respectively
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The potential energy due to the elastic deformation
in the flexible arm is obtained as follows:

1 J-1N {azlp(s,t)}2 ds

- (6)
2E, I, % a5’

N

After substitution Eq. 1 mnto Eq. 6, Uy, can be obtained
and the mode shapes ¢,(S) are calculated using Eq. 2. The
total potential energy of the robot in absence of gravity
forces would be U,

The equations of motion can be obtained using
Lagrangian mechanics. The virtual work due to the torque
T, would equal to W, = 1, 80, therefore, the equations of
motion can be calculated using Eq. 7 and 8:

4 9 —a—gzrl, (i=12...N) (N
dt| 06, | 06,

dfof ) of =0, k=L2..M;£=T-U) (&)

dt| oW, | 9w,
Where:
£ The Lagrangian
0, and W, = The generalized coordinates

After simplifying Eq. 7 and 8, the equations of
motion m matrix form would be as follows:

Be (8. W) By (W) || 6 .

B, (B W) B, (@BW) || W

T

o
where, WeRM! Be R B e R B e RWH h o9
and hgeR™!; K is the stiffness matrix with dimension M
and teR™ is the control torque vector of the hub. Also
0,0,0e®™  are angular position, velocity and

acceleration, respectively. The superscript T in BTy
denotes the transpose matrix.

0 h, (B,W,0,W)
KW | | h, (B,W,0,W)

Fuzzy controller: The hub angle error and its change rate
are two inputs for the PD-type fuzzy controllers. If 0(r) is
the hub angular position at rth control step which 1s
measured on-line, the error and its change are obtained as
follows:

e(r) = 8,(N—6(r) (10)
Ae(r) = e(r)—e(r—1) (11)
Where:
eand Ae = The emror and change in the error,
respectively
0, = The desired jomnt angle of the robot
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Fig. 2: The fuzzy membership functions for crisp inputs

Figure 2 demonstrates the membership functions of
the crisp inputs including the error and the change in the
error of the hub angle in fuzzification part as well as the
controlled torque in defuzzification part as output. For
every input/output seven fuzzy membership functions are
considered as follows. LN, MN, SN, ZE, SP, MP and LP
one-by-one correspond to large negative, medium
negative, small negative, zero, small positive, medium
positive and large positive, respectively.

Each part is a function of the productive parameter D
which is updated on-line through a controlling process.
The productive parameters for the error, change in the
error and the control torque for the ith arm are D°, D* and
D¢, respectively. The fuzzy rules are determined based on
the environmental and the performance conditions of the
robot. The proposed fuzzy rules as a look-up table are
presented in Table 1.

Due to the symmetry of the membership functions,
the weighted average method is used for defuzzification
(Ross, 2004).

Considering m = 2 measured input state variables, the
output is obtained as follows:

_ 20 BT ) (12)
Eh 1Hm uw(xi)
Where:
u = The crisp torque signal
1, = The centroid of the area for every triangular output
membership function
g = The number of inputs

And x; is j-type input error and p;, is the input signal
membership function x; in jth linguistic set.

Neural network: The task of neural networks is to
produce the D parameter for any membership function in
the fuzzification and defuzzification parts. Figure 3
schematically shows the fuzzy controller with neural
tune-up.

Table 1: The fuzzy controller role base

e\Ae LN MN SN ZE SP MP LP
LN LN LN LN LN ZE MP Sp
MN MN MN MN MN ZE MP MP
SN LN MN SN SN ZE Sp sp
ZE SN ZE ZE ZE ZE ZE sp
SP SN SN ZE SP SP MP LP
MP MN MN ZE MP MP MP MP
LP SN SN ZE LP Lp LP LP

The tune-up neural networks of productive D¢, D",
and that of D" are denoted by NNe, NNAe and NNu,
respectively. Every network consists of three layers and
the weight of the neurons for every layer is updated by
optimizing the cost function. The cost function is defined
as follows:

] k .2 k <2
) 2[R S (O+P O+ QL1 ] (13)

Where:
R? 1 pe 0
RE= R =0 ot =[] | 1 ]
RI‘ rlu Plu l)lu (14)
Q
Q =|Q*|=|0
] Lo

The cost function and arm number are denoted by j
and 1, respectively. And k determine the network type,
NNe, NNAe and NNu. The weight error vector is Q¥ and
the error derivative vector and the deformation vector of
networks for robot arms are denoted by RY and PX,
respectively. The error, the error derivative and the
vibration are directly controlled by these weight vectors.
The weights are modified to the lowest point of the cost
function in the weights space, consequently:

T
Yw= _n( a_J) (13)
dw
Where:
Vw = The gradient of weight (or biases)
n = The learning rate which is positive

Now, we calculate the partial derivative of the cost
function with respect to the network weights as follows:
ow!  de aw! O dw  dy ow!

where, w¥ are the weights of the network layers. After
substituting Eq. 13 into Eq. 16, we have:
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Fig. 3: Schematic plan of fuzzy controller with neural tuner
or . de k. 08 L P Y& (20
= Rfe—4Pre 4 Qf y——  (I7) 11 =pb'+ [ Jpw* 22)
aW‘k 1 laW‘k 1 laW]}\ Ql \‘Uan}\ 1 p 1 ; q) p 1 le
Where:
Using the chain role, Eq. 17 can be rewritten as Zlk = The pth input neuron in the second layer
follows: pl
1 E T The input for the only neuron (output neuron) in
(a7;) ¢ (90) (du) (aD}) ‘
i/ __RFe i i i/ _ .
@wh %) @D @wh a8 o - the third layer .
. e X;" = The k-type network input at ith joint (arm)
Pre (06;) (du,) (dD|)+Qk o/ (u,)
© 7 @u) D)) @w;) ' And:

2 2 3 3
k k k k
For network learning, Lightbody ef al. (1990) pwi.pbi,pw; andpb;

proposed using the sign of terms
are the weight and bias of the second and the third layers,
90, 90, Iy respectively. Meanwhile, x™™ and x™" which are the
ouwou anda inputs for NNe and NNu networks are assigned as the
o ] angular position for the ith arm and similarly x™* which
is an input for the NNAe network is assigned as the
angular velocity for the ith arm. The output of the network
external layer (third layer) is assumed to be equal to the

productive parameter of the membership function,

instead of their real values. Therefore, after modifying
Eq. 18 and substituting it into Eq. 15, we have:

du, D (19

Aw! =n(R¥e+P"¢, +Q‘kw)aquaw§ therefore:
ko 3 k
The sigmoid function is selected as the activating D _(D(Hl) 23)
function: '
2
o(I) = T -1 (20) Figure 4 demonstrates three-layer perceptron neural
network. Using Eq. 23-20 the following equations are
. derived:
The first and second input layers are as follows: . "
dD? 1 S
o 2]
pI' = pb+xt pwt (p=0.1..0) @b "(Pblj
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odmy=pt

Fig. 4: Three-layer perceptron neural network

a(g);j;az(fswfj{l{Q(élfjﬂ{w)ﬂ

a[%j%m[;ﬁj{]{@[éﬁﬂz} (26)
ST

(27)

Substituting Eq. 24-27 into Eq. 17 and using
momentum to increase the convergence rate, the following
equations are derived:

2
A(pb}j:%an(R?ei+Pikéi+Qw)x
- @f pi* 2 90U gl pbr
pl an i pb; B

3
:%azn(Rf e +P e +Q w)(pwf‘ jx

el Lo Tgeomefoe

29

(28)

2
o)

3 2
A(pr]=%0ﬂ1(R? e +Pe +Q?W) q)(pl:‘]

CCyIERR)

(30)

r—1
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%azn(R? e, +P' " +Qlv)
() wh)

=0 (2(p72) !

-[e((p*)w})

A((p?)w!)

— »

1 p )Iwil‘

——

k

i

=

where, § and r are the momentum coefficient and the
control stage, respectively.

RESULTS AND DISCUSSION

In this study, the performance and the efficiency of
designed controller is studied by performing simulation
and the results are discussed.

As an example, we consider a 3-link robot with a third
flexible arm. The geometrical and mass properties are
listed in Table 2. We assume that all the arms have
rectangular cross section. The arms are made of aluminum
with the density and Young’s modulus of 2710 kg m ™~ and
71 GPa, respectively. The mass, inertial moment and the
gear ratio of the rotor are 0.1 kg, 0.025 kg m™ and 1,
respectively. The payload mass is 300 g.

Learning rate and momentum coefficient in the neural
network are considered 0.35 and 0.9, respectively. Using
Eq. 3 and 16, the first frequency of vibration of the flexible
arm and two first natural frequencies would be 11.96 and
293.16, respectively.

The path of end effector for the 3-link planar robot
with a payload is illustrated in Figure 5. The initial relative
angles of the arms are zero before the motion starts and
the selected path is a straight line that makes 60 degrees
with the arms. The position of the robot arms and that of
the tip payload mass are schematically shown during the
motion.

Figure 6 demonstrates the vibration of the robot tip in
the trajectory tracking by proposed controller. The
maximum deflection of the robot tip is 3.7 mm.

Figure 7-9 present the control driving torques at the
first, second and the third joints, respectively. The control
torques that are produced by the controller for
positioning the arms at the desired angles for trajectory
tracking vary between 0 and 2 N cm™,

Figure 10 shows the angular position error of the
joints 1, 2 and 3, respectively. The one-second settling
time for all three arm controllers implies that the learning
speed is suitable for the convergence of neural network r
the tune-up of D parameter.



Int. J. Syst. Signal Control Eng. Appl., 7 (4-6): 61-69, 2014

Table 2: The mass and dimension of the robot arms

Arm
Quantity Units First Second Third
Length cm 20 20 40
Width mm 10 10 20
Thickness min 15 15 2
Mass 81 81 43

4k
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4. L ; L " L . 1 .
0 1 2 3 4 5 6 7 8

Time (sec)

Fig. 6: Vibration of robot tip

— (i8]

Torque (N. Cm)
~ o

'
)

t

(=3
[§8)

3 4 5 6 7 8
Time (sec)

Fig. 7: Torque of the first motor’s arm
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Fig. 8: Torque of the second motor’s arm

Figure 11-14 mndicate productive parameter D for the
error, change in the error and the control torque of joints
1, 2 and 3, respectively. These parameters vary as step
function m the jomt 1, 2 approximately, whereas they

&7

—

Torque (N. Cm)
S

0 1 2 3 4 5 6 7 8
Time (sec)

Fig. 9: Torque of the third motor’s arm
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Fig. 10: Angular position error of joints 1, 2 and 3
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Fig. 11: Productive “D” related to membership functions
of error, change in error and torque in the joint 1

become steady after reaching a peak close to the
start point of the joint 3. We would like to compare the
results of the proposed approach with those of an inverse
control method which is a common model-based
technique.

Figure 14 shows the tip tracking error for the three
controllers, mversion and fuzzy controller and fuzzy
controller with neural tuner. The fuzzy controller results in
rather high settling time, overshoot and undershoot in
the system response whereas these parameters are
significantly decreased using the proposed controller.
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Fig. 12: Productive “D” related to membership fimctions
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Fig. 14: Tip error for fuzzy, fuzzy with neural tuner and
mversion controllers

CONCLUSION

In this study, a new fuzzy logic control with neural
tune-up for a seral flexible robot was presented. The
equations of motion were derived using Lagrangian
mechanics and the assumed-modes method. A fuzzy
controller consisting of parameter membership functions
i fuzafication and m defuzatication parts was presented,
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and the crisp output was calculated using the weighted
average method. Using an on-line learmng three-layer
perceptron neural network, the productive parameter D of
the membership functions was produced while tracking
the trajectory. A trajectory tracking simulation was carried
out and the jomts angular error and the tip error proved
the suitability of design and affirmed the effectiveness of
the fuzzy controller with neural tuner. The analyses and
comparison of the results from the proposed controller
with those from the two other commonly used controllers,
showed the superiority of the proposed controller.
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