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Abstract: This study investigates the adaptive controller design for the Generalized Projective Synchromzation
(GPS) of identical Liu-Chen 4-scroll chaotic systems, identical Lu-Chen-Cheng 4-scroll chaotic systems
and non-identical Liu-Chen and Lu-Chen-Cheng 4-scroll chaotic systems. Lyapunov Stability Theory is the
methodology used for establishing the adaptive GPS synchromzation results derived in this study. Since, the
Lyapunov exponents are not required for these calculations, the proposed Adaptive Control Method 18 very
effective and convenient for achieving the Generalized Projective Synchronization (GPS) of the 4-scroll chaotic
systems. Numerical simulations are shown to demonstrate the effectiveness of the adaptive GPS
synchronization results derived in this study for the 4-scroll chaotic systems.
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INTRODUCTION

Chaotic systems are nonlinear dynamical systems
which are characterized by sensitive dependence on initial
conditions. This sensitivity 15 popularly known as the
butterfly effect (Alligood et al., 1997).

Chaos is an interesting nonlinear phenomenon and
has been studied well in the last 3 decades. Chaos theory
has wide applications m several fields like physical
systems (Lakshmanan and Murali, 1996), chemical
systems (Han ef al, 1995), ecological systems
(Blasius ef al, 1999), secure communications, etc
(Cuomo and Oppenheimn, 1993; Kocarev and Parlitz, 1995,
Murali and Lakshmanarn, 1998).

Chaos synchronization is a phenomenon that may
occur when two or more chaotic oscillators are coupled or
a chaotic oscillator drives another chaotic oscillator.
Because of the butterfly effect which causes the
exponential divergence of the trajectories of two identical
chaotic systems started with nearly the same initial
conditions, synchronizing two chaotic systems 1s
seemingly a challenging research problem. In most of the
chaos synchronization approaches, the master slave
formalism is used. If a particular chaotic system is called
the master system and another chaotic system 1s called
the slave system then the i1dea of the chaos
synchronization is to use the output of the master system

to control the slave system so that the output of the slave
system tracks the output of the master system
asymptotically. Since the seminal research by Pecora and
Carroll (1990), chaos synchronization problem has been
studied well in the chaos literature.

In the last 2 decades, various schemes have been
derived for chaos synchronization such as OGY Method
(Ott et al., 1990), Active Control Method (Ho and Hung,
2002; Huang et al., 2004; Chen, 2005; Sundarapandian,
2011d), Adaptive Control Method (Lu et al., 2004b;
Chen and Lu, 2002; Sundarapandian, 201 1a, e), Time Delay
Feedback Method (Park and Kwon, 2003), Backstepping
Design Method (Wang and Ge, 2001; Xiau-Qun and
Tun-An, 2003; Park, 2006; Vincent, 2007), Sampled Data
Feedback Synchronization Method (Lee et al., 2010),
Sliding Mode Control Method (Slotine and Sastry, 1983,
Utkin, 1993; Vaidyanathan and Sampath, 2011), etc.

So far, many types of synchromzation phenomenon
have been presented such as complete synchronization
{(Pecora and Carroll, 1990), generalized synchromzation
(Wang and Guan, 2006), anti-synchronization (Zhang and
Zhu, 2008; Chiang ef af., 2008; Sundarapandian, 2011h),
hybrid synchronization (Sundarapandian, 2011b, c, £, g),
projective  synchronization (Jia, 2007), generalized
projective  synchromzation (L1, 2009,
Sundarapandian, 201 1a, b, 2012), etc.
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Complete Synchronization (C8) is characterized by
the equality of state variables evolving in time while
Anti-Synchromization (AS) 18 characterized by the
disappearance of the sum of relevant state variables
evolving in time. In hybrid synchronization of two
systems, part of the systems
completely synchronized and the other part
anti-synchronized so that the Complete Synchromzation
(CS) and Anti-Synchronization (AS) co-exist in the
systems. Projective Synchronization (PS) is characterized
by the fast that the master and slave systems could be
synchronized up to a scaling factor.

In Generalized Projective Synchronization (GPS), the
responses of the synchromzed dynamical states
synchronize up to a constant scaling matrix «. Tt is
easy to see that the complete synchromzation and
anti-synchronization are special cases of the generalized
projective synchromzation where the scaling matrix o = 1
and ¢ = -1, respectively.

This study describes the adaptive controller design
for the GPS of the identical Liu-Chen 4-scroll systems
(Liu and Chen, 2004), the identical Lu-Chen-Cheng 4-scroll
systems (Lu et al., 2004a) and the non-identical Liu-Chen
and Lu-Chen-Cheng 4-scroll systems. The adaptive GPS
synchronization results for the 4-scroll systems have been
established using the Lyapunov Stability Theory (Hahn,
1967).

chaotic one i

18

SYSTEM DESCRIPTION

In this study, the researchers describe the 4-scroll
chaotic systems. The Liu-Chen 4-scroll system (Liu and
Chen, 2004) is described by the 3D dynamics:

X1 T AR -XKpR,
(1)

X, =-bx, + XX,

X; = -CX; XX,

where, x,-x; are the states and a-c are constant, positive
parameters of the system. The system (1) exhibits a
4-scroll chaotic attractor when the system parameter
values are chosen as:

a=04.b=12,¢c=5

The 4-scroll strange attractor of the Liu-Chen system
(1) 1s depicted n Fig. 1. The Lu-Chen-Cheng 4-scroll
system (Lu et al., 2004b) is described by the 3D dynamics:

Xl TPX -X X,
2)

X, =-0%, +X1X3 +8

Xy T IX, JFX1X2
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Fig. 1: The 4-scroll attractor of the Liu-Chen system
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Fig. 2. The 4-scroll attractor of the Lu-Chen-Cheng

system

where, x,-x, are the states and p-s are constant, positive
parameters of the system. The system (2) exlubits a
4-scroll chaotic attractor when the system parameter
values are chosen as:

p=20/7,q=10,r=4,8=5

The 4-scroll strange attractor of the Lu-Chen-Cheng
system (2) 1s shown n Fig. 2.

ADAPTIVE GENERALIZED PROJECTIVE
SYNCHRONIZATION OF IDENTICAL
WANG 3-SCROLL SYSTEMS

Theoretical results: In this study, researchers deploy
adaptive control to derive results for the Generalized
Projective Synchromzation (GPS) of the identical Liu-Chen
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4-scroll systems in 2004 when the system parameters are
unknown. Thus, the master system 1s described by the
Liu-Chen dynamics:

5(1 TaK, -X,X,
(3)

X, =-bx, + XX,

X; = -CX; XX,

where, x,-x, are the states and a-c are unknown parameters
of the system. Also, the slave system is described by the
controlled Liu-Chen dynamics:

Vy=ay -y, ¥, Ty
¥, = by, vy, T,
Y. =Y, TYY, T,

“4)

where, y;-y; are the states and uu sare the adaptive
controls to be designed. The GPS synchronization errors
are defined as:

e =y -ax({i=123) (3

where, the scales «,-¢, are real numbers. The error
dynamics is obtained as:

€ T ag -y;¥; ta,xx; tu
(6)

€; = 'bez + Yi¥s -8, XX, Jruz

€; T -CC, + Yi¥s -a:%X, Jru:s

The researchers consider the adaptive controller
defined by:
u =-ae +Vy,y,-8,X,X,-ke
o hez -y taXX; -kpe, @)

=
u; = ey - Yy, taXx, - ke,
where, 8- are estimates of the parameters

respectively. Substituting Hq. 7 into 6, the researchers
obtain the closed-loop error dynamics:

a-c,

g =(@a- 5—)’31 -k
e, =-(b-be, -k,e,

é, =-{c-Cl, -ke,

&)

The researchers define the parameter estumation
erTors as:
)

e,=a-d,¢,=b-b,e =c-¢

a

Using Eq. 9, the error dynamics m Eq. 8 1s sumplified
as:

23

€ T8~ klel

e, = -, —k,e, (10)
e; =-ee; — ke,

For the derivation of the update law for adjusting the
estimates of parameters, the Lyapunov method is used.
The researchers consider the quadratic Lyapunov
function defined by:

(11)

1
V=—[el+tel +tel+e’+e’ +e’
2 1 2 3 a i c

Which is positive definite on R’. The researchers
note that:

& =48 =be =20 (12)

[

Differentiating Eq. 11 along the trajectories of the
Eq. 10 and using Eq. 12, the researchers find that:

T 2 2 2 z_A
V=ke -k,e; -ke; te, [el —a}+

e, [e b} ve.[-1-4]

In view of Eq. 13, the estimated parameters are
updated by the following law:

(13)

L.
a=e tk,e,

b= el +ke, (14

A Ll
c=-e; tke,
where, the gains k,-k; are positive constants.

Theorem 1: The adaptive control law (7) achieves General
Projective Synchronization (GPS) between the identical
Liu-Chen 4-scroll Chaotic systems (3) and (4), where the
parameter update law 13 given by (14) and the gans
k (1=1, 2,..,6) are positive constants. The GPS errors
e, (1 =1, 2, 3) and the parameter estimation errors e,-e,
converge exponentially to zero as t-e for all initial
conditions.

Proof: Upon substituting the parameter update law Eq. 14
1nto the Eq. 13, the researchers obtain the derivative of the
quadratic Lyapunov function, V as:

V=rlel kel kel ke’ kel ke’ (15)

Which is a negative definite function on R’. Hence
by Lyapunov stability theory (Hahn, 1967), it follows that
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the GPS errors e;-e;~0 as t-- as and the parameter
estimator errors e,-e,~0 as t-o for all initial conditions.

This completes the proof.

Numerical results: For the numerical simulations, the 4th
order Runge-Kutta Method is used to solve the two
systems of differential Eq. 3 and 4 with the adaptive
controller (7). The parameter estimates of the identical
Liu-Chen systems (3) and (4) are taken so that the
systems extubit 4-scroll chaotic attractors, 1e., a = 0.4,
b =12 and ¢ = 5. The researchers take the state feedback

gains as:
k=4fori=1,2,..6

The imitial values of the parameter estimates are

chosen as:
a(0) = 6. B0)=8, &0) =20

The imtial values of the master system (3) are chosen

as:
x,(0) = 12, x,(0) = 21, x,(0) = -5

The initial values of the slave system (4) are chosen
as:
¥i (0) =-2, Y2 (0) =9, ¥; (0) =15
The GPS scales o, are chosen as:

a, =28, a,=06, a,=-14

Figure 3 shows the GPS between the identical
Liu-Chen 4-scroll chactic systems (3) and (4). Figure 4

shows the time history of the GPS errors ej-es.
Figure 5 shows that the parameter estimates a-¢
convergeto the chosen values of the system a-c,
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Fig. 3. GPS of the identical Liu-Chen 4-scroll systems
(Theorem 1)

parameters respectively, as t-e. Figure € shows the
time history of the parameter estimation errors e,-e.
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ADAPTIVE GENERALIZED PROJECTIVE
SYNCHRONIZATION OF IDENTICAL LU-CHEN-
CHENG 4-SCROLL CHAOTIC SYSTEMS

Theoretical results: In this study, the researchers deploy
adaptive control to derive results for the Generalized
Projective  Synchronization (GPS) of the identical
Lu-Chen-Cheng 4-scroll systems in 2004 when the system
parameters are unknown. Thus, the master system is
described by the Lu-Chen-Cheng dynamics:

Xl TPX -X X,
(16)

X; T X, JrX1X3 s

Xy T IX, JrX1X2

where, x,-X, are the states and p-s are unknown parameters
of the system. Also, the slave system is described by the
controlled Lu-Chen-Cheng dynamics:

VISP -YYs T
Y, = -qy, Ty Y, tstu,
¥y =Ty, tyy, T

(an

where, y,-y; are the states and u,-u, are the adaptive
controls to be designed. The GPS synchronization errors
are defined as:

e =y -ax({i=123) (18)

where, the scales «,-¢¢; are real numbers. The error
dynamics is obtained as:

€ TPpe -Yy,¥; taxx, tu

(19)

éz —-qe; +(Y1Y3 'alexz) +s(1-a2)+u2

€; = I8 Ty, -aXX; T,

The researchers consider the adaptive controller
defined by:

u =-pe tyy, -axx,-ke
U, = de, - VY TagX X, -§(1—a2)—k262 (20)

u, =Te, - ¥y, ta;XX, -k.e,

where, P-% are estimates of the parameters p-s,
respectively. Substituting Eq. 20 mto 19, researchers
obtain the closed-loop error dynamics:

e =(p-Ple, —ke
&, =—(q-qe, +(s-3)1-0o,) ke,
—(r-te, ke,

2D

S

The researchers define the parameter estumation
erTors as:

25

e, =p-p.e, =q-g,e, =r-T,6, =8-8 (22)
Using Eq. 22, the error dynamics in Eg. 21 is
simplified as:
¢ =ee -ke
e, =-ee, te(l-a,)-ke, (23)

G; — €0 'kaea

For the derivation of the update law for adjusting the
estimates of parameters, the Lyapunov method is used.
The researchers consider the quadratic Lyapunov
function defined by:

1
V:—(ef+e§+e§+ez+ez+ez+ez) 24
2 i q T s

Which is positive definite on R’. The researchers

note that:
éP =P éq - _(;\19 ér - _ié - _é (25)

Differentiating Eq. 24 along the trajectories of Eq. 23
and using Eq. 25, the researchers find that:

V=1ke kel -kelte, [ef -f)} +

e, [-ei - (ﬂ +e, [-e§ - f"} +

es[ez(l—az)—g}

(26)

In view of Eq. 26, the estimated parameters are
updated by the following law:

— Al 2 al
=e; tke,d=-e; tke,

2 i
-e; tke, s=¢,(l-a,)tke

(27)

where, the gains k,-k; are positive constants.

Theorem 2: The adaptive control law (20) aclieves
General Projective Synchronization (GPS) between the
identical Tu-Chen-Cheng 4-scroll chaotic systems (16) and
(17) where the parameter update law is given by (27) and
the gains k; (1= 1, 2......7) are positive constants. The GPS
errors e (I = 1, 2, 3) and the parameter estimation errors
e,-e, converge exponentially to zero as t- for all initial
conditions.

Proof: Upon substituting the parameter update law (27)
1nto the Eq. 26, the researchers obtain the derivative of the
quadratic Lyapunov function V as:

i 2 2 2 2
V=-ke —k,e; —ke; —k,e -

2 2 2
ke, —kel -kpe;

(28)
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Which is a negative definite function on R’. Hence
by Lyapunov stability theory (Hahn, 1967), it follows that
the GPS emrors e,-e;~0 as t-co and the parameter estimator
errors e,-¢,~0 as t-e for all initial conditions.

Numerical results: For the numerical simulations, the
fourth order Runge-Kutta Method 1s used to solve the
two systems of differential Eq. 16 and 17 with the adaptive
controller (20). The parameter estimates of the identical
Lu-Chen-Cheng systems (16) and (17) are taken so that
the systems exlubit 4-scroll chaotic attractors, i.e.,
pP=20/7,q=10,r=4,8=5.

The researchers take the state feedback gains as
k=4dfori=1,2...7. The initial values of the parameter
estimates are chosen as:

POy =35, 4(0) =2, 1(0) = 6, 3(0) = 4

The initial values of the master system (16) are
chosen as:

X (=12, x,(0) =8, x,(0)=-6

The imtial values of the slave system (17) are chosen
as:

¥ =9, y,(0)=-10, y,(0)=2
The GPS scales o, are chosen as:

a,=-29 a,=17 a,=15

Figure 7 shows the GPS between the identical
Lu-Chen-Cheng 4-scroll chaotic systems (16) and (17).
Figure 8 shows the time history of the GPS errors e,-e;.
Figure O shows that the parameter estimates p-$

100 A

S e o)X
2 07 —
:6_ 0_
:_ 250 4

-100 T T T T

T T T
04 06 08

T T T
0 02 1.0 12

Time (sec)

Fig. 7. GPS of the Identical Lu-Chen-Cheng 4-scroll
system (Theorem 2)
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converge to the chosen values of the system parameters
p-s, respectively as t-o. Figure 10 shows the time history
of the parameter estimation errors e,-e,.
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ADAPTIVE GENERALIZED PROJECTIVE
SYNCHRONIZATION OF LIU-CHEN AND LU-
CHEN-CHENG 4-SCROLL SYSTEMS

Theoretical results: Tn this study, the researchers deploy
adaptive control to derive results for the Generalized
Projective Synchronization (GPS) of the non-identical
Lw-Chen and Lu-Chen-Cheng 4-scroll systems in 2004
when the system parameters are unknown. Thus, the
master system 1s described by the Liu-Chen dynamics:

X, T ax, -X,X,

X, = -bx, + XX, (29)

Xg = -CX, T XX,

where, x,-x, are the states and a-c are unknown parameters
of the system. Also, the slave system is described by the
controlled TLu-Chen-Cheng dynamics:

Vi PY, — VLY

Vo= QY H Yy HS U, (30)

Yi="1¥; T¥1Y: T,

where, y,-y; are the states, p-s are unknown parameters of
the system and u,-u; are the adaptive controls to be
designed. The GPS synchronization errors are defined as:

e =y —ax(i=1,23) (31)

where, the scales «,-¢, are real numbers. The error
dynamics is obtained as:

€ = PY, — Yoy — oy (@, — XX, 0+ 1,
€, =—qy, +y,¥; +5— o, (-bx, +xx,)+ 1, (32)

0y = —TY; +Y¥, — O (0K + XX, )+ U,
The researchers consider the adaptive controller as:
u, =-py, +y,y, o, (8x, —x,x,) - ke

av, -y, ¥, — 8§+, (JE\XZ +xx,)-k,e, (33)

u,

u =Ty, —¥,¥, + o (-8, + X%, ) - ke,

where, are estimates of the parameters,
a,b,c.p.qLs respectively. Substituting Eq. 33 into 32, the
researchers obtain the closed loop error dynamics:

e, =i{p-pPly, -ax(a 'é)' ke,
6, =-(q-Q)y, + (5-8) + a,x,(b-D)-k,e, (34)

&, =-(r-1)y, T ax;{c- <) -kqe,

27

The researchers define the parameter estimation
errors as:

S

a

a

—8,e =
q7q3

(35)

e, e,
Using Eq. 35, the error dynamics in Eq. 34 is simplified
as:
g = ey, — X8, — ke,
(36)

€, =€y, 6 +0,X0, ke,

e, =—¢€y, +o,X.e —k.e,

For the derivation of the update law for adjusting the
estimates of parameters, the Lyapunov method 1s used.
The researchers consider the quadratic Lyapunov
function defined by:

2 2 2 2 2 2
l €, -&-e2 +e3 -‘rea-&-eb -&-eC +

2 2 2 2
Zle, Te, Te te

(37)

which is positive definite on R”. The researchers note that:

e,=-d,e, =—be =-&e =P,

| (38)

€, =-Q,¢ =-T,6, =—%

Differentiating Eq. 37 along the trajectories of the
system (36) and using Hq. 38, the researchers find that:

T _ 2 2 2 5
V=-ke —-k,e; -kl +e, [—oclxlel - a} +

e, [cczezx2 - b} +e, |:G3X363 - é} +

(39)
A [YIel - 13:| +e, [7Y2 I (ﬂ +

e, |:—y363 - fz} +e, [ez - :ﬂ

In view of Eq. 39, the estimated parameters are
updated by the following law:

= —uxe + ke b=axe; ke,

S=axe ke p=ye +ke,. (40)
él =Y.t kxeqi\m = -y + K,

§= e, + ke,

where, the gains k, (1= 4,...,10) are positive constants.

Theorem 3: The adaptive control law (33) achieves
General Projective Synchromzation (GPS) between the
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non-identical Liu-Chen 4-scroll system (29) and the
Lu-Chen-Cheng 4-scroll chaotic system (30) where the
parameter update law is given by (40) and the gains
k (1=1,2,..,10) are positive constants. The GPS errors ¢
(i=1, 2, 3) and the parameter estimation errors e, e,, e, e,
e, e, e, converge exponentially to zerc as t-eo for all mitial
conditions.

Proof: Upon substituting the parameter update law (40)
mto Eq. 39, researchers obtain the derivative of the
quadratic Lyapunov function V as:

T E] 2 2 ] 2
V=-ke -k, -k —k,e, ke, -

2 2 2 2 2
kel — kTe10 - kgeq — ke, -k e;

(41)

which is a negative definite function en R". Hence by
Lyapunov stability theory (42), it follows that the GPS
errors e;-¢;~ 0 as t=oo and the parameter estimator errors
e~0 e~-0e-0 ¢-0, e-0 e~0, e ~0as t-e for all initial
conditions.

Numerical results: For the numerical simulations, the 4th
order Runge-Kutta Method is used to solve the two
systems of differential Eq. 29 and 30 with the adaptive
controller (33).

The parameter estimates of the non-identical Liu-
Chen system (29) and the Lu-Chen-Cheng system (30) are
chosen so that the systems exlubit 4-scroll chaotic
attractors, 1.e.,

a=04,b=12,c=5p=207q=10,r=4,8=5
The researchers take the state feedback gains as:

k=4fori=1,2,3,....10

..... 5

The initial values of the parameter estimates are
chosen as:

4(0) =3, b(0) = 4, &0)=19,
POY =7, §(0) =8, F(0) = 12, §(0) = 10

The initial values of the master system (16) are
chosen as:
%,(0) =16, x,(0) = -7, x,(0) = 19

The initial values of the slave system (17) are chosen
as:

vi(0)=-6,y:(0) =14, y5(0) =5
The GPS scales are chosen as:

a,=19,a,=-25a, =37

28

Figure 11 shows the GPS between the Liu-Chen and
Lu-Chen-Cheng 4-scroll chaotic systems. Figure 12
shows the time history of the GPS errors e,-e,. Figure 13
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Fig. 11:GPS of the Liu-Chen and Lu-Chen-Cheng 4-Scroll
chaotic systems
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Fig. 14: Time history of the parameter estimation
errors e-¢, (Theorem 3)
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errors ¢,-¢, (Theorem 3)

shows that the parameter estimates da-% converge to

the chosen values of the system parameters a-c,

respectively as t-. Figure 14 shows the time history of
the parameter estimation errors e,-e.. Figure 15 shows that
the parameter estimates P—% converge to the chosen
values of the system perameters p-s, respectively as
t-eo. Figure 16 shows the time history of the parameter
estimation errors e -e,.

CONCLUSION

In this study, researchers have designed adaptive
controllers  for achieving Generalized Projective
Synchronization (GPS) of 4-scroll chactic attractors, viz.,
the identical Liu-Chen 4-scroll chaotic systems in 2004,
the identical Lu-Chen-Cheng 4-scroll chaotic systems and
the non-identical Liu-Chen and Lu-Chen-Cheng 4-scroll
chaotic systems when the system parameters are
unknown.

The adaptive GPS synchronization results for the
4-scroll chaotic systems have been proved using the
Lyapunov stability theory. Numerical simulations have
been presented to validate and demonstrate the
effectiveness of the GPS synchronization results derived
in this study.
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