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Abstract: In this study, researchers apply Adaptive control method to derive new results for the global chaos
anti-synchromzation of identical hyperchaotic Lorenz systems in 2007, identical hyperchaotic Chen systems
in 2010 and non-identical hyperchaotic Lorenz and hyperchaotic Chen systems. In this study, we shall assume
that the parameters of both master and slave systems are unknown and we devise adaptive anti-synchronization
using  the of parameters and slave systems. The adaptive
anti-synchronization results derived in this study are established using Lyapunov stability theory. Since, the
Lyapunov exponents are not required for these calculations, the proposed Adaptive control method is very

schemes estimates for both master

effective and convenient to achieve anti-synchronization of identical and non-identical hyperchaotic Lorenz
and hyperchaotic Chen systems. Numerical simulations are shown to demonstrate the effectiveness of the
proposed adaptive anti-synchromzation schemes for the hyperchaotic systems addressed in this study.
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INTRODUCTION

Chaotic systems are non-linear dynamical systems
that are lighly semsitive to imtial conditions. This
sensitivity is popularly known as the butterfly effect
(Alligood et al., 1997). Smce, the seminal research by
Pecora and Carroll (1990), chaos synchronization has been
studied intensively and extensively in the last two
decades (Pecora and Carroll, 1990; Lakshmanan and
Murali, 1996, Han ef al., 1995; Blasius et al., 1999,
Cuomo and Oppenheim, 1993; Kocarev and Parlitz, 1995,
Tao, 1999, Ott et al, 1990; Ho and Hung, 2002;
Huang et al., 2004, Chen, 2005, Sundarapandian and
Karthikeyan, 2011a, b; Lu et al., 2004, Chen and Lu, 2002;
Park and Kwon, 2003). Chaos theory has been applied to
a variety of fields like physical systems (Lakshmanan and
Murali, 1996), chemical systems (Han ef al, 1995),
ecological systems (Blasius et al, 1999), secure
communications (Cuomo and Oppenheim, 1993; Kocarev
and Parlitz, 1995; Tao, 1999), etc. In the recent years,
various schemes such as PC method (Pecora and Carroll,
1990), OGY method (Ott et al., 1990), Active control
method (Ho and Hung, 2002; Huang et al., 2004

Chen, 2005, Sundarapandian and Kartlukeyan,
2011a, b, Lu et al, 2004), Adaptive control method
(Lu et al, 2004; Chen and Tu, 2002), time-delay
feedback  approach (Park and Kwon, 2003),
Backstepping design method (Yu and Zhang, 2006),
Sampled-data  feedback  synchromization  method
{Zhao and Lu, 2008), sliding mode control (Konishi ef af.,
1998; Yau, 2004), etc. have been successfully applied for
chaos synchronization.

Inmost of the chaos synchronization approaches, the
master-slave or drive-response formalism 1s used. If a
particular chaotic system is called the master or drive
system and another chaotic system 1s called the slave or
response system then the 1dea of the anti-synchromzation
is to use the output of the master system to control the
slave systemn so that the states of the slave system have
the same amplitude but opposite signs as the states of the
master system asymptotically.

In this study, researchers apply Adaptive control
method to derive new results for the global chaos anti-
synchronization of identical hyperchactic Lorenz systems
(Gao et al., 2007), identical hyperchaotic Chen systems
(Li-Xin et al, 2010) and non-identical hyperchaotic

Corresponding Author: V. Sundarapandian, Department of Systems and Control Engineering, Research and Development Centre,
Vel Tech Dr. RR & Dr. SR Technical University, Avadi, 600-062 Chennai, Tamil Nadu, India



Int. J. Syst. Signal Control Eng. Appl, 4 (2): 18-25, 2011

Lorenz and hyperchaotic Chen systems. Tt is assume that
the parameters of the master and slave systems are
unknown.

ADAPTIVE ANTI-SYNCHRONIZATION
OF IDENTICAL HYPERCHAOTIC
LORENZ SYSTEMS

Theoretical results: In this study, researchers apply the
Adaptive control method to derive new results for the
anti-synchronization of identical uncertain hyperchaotic
Lorenz systems (Gao et al., 2007). Thus, the master
system is described by the hyperchaotic Lorenz
dynamics:

X, =0(%; —X,)

X, =PX, —X; ~X CXX, (1)
Xy =xx, —Bx,

X, =TX,X,

where, x,-x, are the state variables and o, B, p and r are
unknown parameters of the system. The slave system is
described by the controlled hyperchaotic Lorenz
dynamics:

yi=0(y;, ~yty

V2=RY, T Y, T Ye TYYs T, (2)

Yi=vi¥, —By; tu,

Yy TIY,¥, H Uy

where, y,-y, are the state variables and p,-p, are the
non-linear controllers to be designed. The hyperchaotic
Lorenz system (Eg. 1) is a new hyperchaotic system
derived from the Lorenz system by Gao et al. (2007). The
system (Eq. 1) 18 hyperchaotic when:

0=10, B=8/3, p=28 andr=0.1

The state portrait of the hyperchaotic Lorenz system
(Eq. 1) 1 shown m Fig. 1. The anti-synchromzation
error is defined as:

e =y, +x, (i=1,2,3,4) (3)

A simple calculation gives the error dynamics as:

& =0(e,—e )ty
¢, =pe —€, ~ ¢ ~ V¥, XX, T, (4)
&, =—Pe, tyy, +xx, tu,

€, =Ty, Yy, XX, 0+

Fig. 1. State orbits of the hyperchaotic Lorenz system

Let us now define the adaptive functions u,(t),-u,(t)

as:
u, (t)=-6(e, —e) ke
u, (D=—pe, +e, te, +yy, +txx, ~ke, (5)
U, (t):Bez VY, XX, — ke,
u, (D)=—1(y,y, + x,%,)— ke,
where, &p.pandt are estimates of o, P, p and r,

respectively and k (i = 1, 2, 3, 4) are positive constants.
Substituting Eq. 5 into 4, the error dynamics simplifies to:

& =(c-8&)e, —¢) ke,
ézz(p*ﬁ)f% —ke (6)
8y =— B- 6)63 ke,

&, =(r—1)(y,y, + x,x,) —k,e,

Let us now define the parameter estimation error
as:

o=B- R )
P

Substituting Eq. 7 into 6, researchers obtain the
error dynamics as:

& =e(e,—e)-ke
e, =eg —k,e, )

&, =—ege, —k.e,

¢, =¢,(v,y; + X,%, )~ ke,
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For the derivation of the update law for adjusting the
estimates of the parameters, the Lyapunov approach is
used. Researchers consider the quadratic Lyapunov
function defined by:

2
B

1
V:E(ef+e§+e§+ej+ei+e +eltel) )

which is a positive definite function on R*. We also note
that:

e,==6. & =—p &,=—p & =—i 1Y)

Differentiating Eq. 9 along the trajectories of Eq. 8
and noting Eq. 10, they find that:

r_ 2 2 2 2
V=-ke -k, —ke —-ke, +

eci|:el(e2 —‘31)—‘3}L eﬁ[—ei —é}u

e, [ele2 —f)} +e, [64 (7,¥; +%,%,) —f]

(1

In view of Eq. 11, the estuimated parameters are
updated by the following law:

C;5231(‘32 —¢ ) +k.e,
-

P

f":e4 (yays + %)+ kse,

el + k.eq

(12)

=ee, tke,

where, k.-k; are positive constants. Substituting Eq. 12
mto 11, they obtain:

VoKl kel kel kel kool kel kel —ke? (13)

which is a negative definite function on R® Thus by
Lyapunov stability theory (Hahn, 1967), it is immediate
that the anti-synchronization error ¢, (1, 2, 3, 4) and the
parameter estimation error e, ¢, ¢, and e, decay to zero
exponentially with time. Hence, they have proved the
following result.

Theorem 1:. The identical uncertain hyperchaotic Lorenz
systems (Eq. 1 and 2) are globally and exponentially
anti-synchromzed by the adaptive control law (Eq. 5),
where the update law for the parameter estimates is given
byEq. 12andk (i=1, ..., 8) are positive constants.

Numerical results: For the numerical simulations, the
fourth-order Runge-Kutta method with time-step h = 10~
15 used to solve the two systems of differential Eq. 1
and 2 with the adaptive non-linear controller (Eg. 5).
We take k; = 2 fori = 1, 2, .., 8 The parameters of the

20

Time (sec)

Fig. 2: Anti-synchronization of hyperchaotic Lorenz
systems

Time (sec)
Fig. 3. Parameter estimates &t),B(t),p(t).Et)

hyperchaotic Lorenz systems (Eq. 1 and 2) are chosen
so that the systems are hyperchaotic, 1.e.:

5=10, B=8/3, p=28 and 1=0.1
The initial values of the parameter estimates are taken
as:
(=2, B(0)=10, H(0)=4 and F(0)=6
The initial values of the master system (Eq. 1) are:

X, (=12, x,(0)=25, x,(0)=16 and x,(0)=20

The mitial values of the slave system (Eq. 2) are:

yi(0)=25, y,(0)=30, y,(0)=10 and y,(0)=14
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Figure 2 shows anti-synchronization of the
hyperchaotic Lorenz systems (Eq. 1 and 2). Figure 3
shows that the estimated values of the parameters,
viz., 6,f, padi converge to the system parameters g = 10,
P =873, p=28andr=0.1, respectively.

ADAPTIVE ANTI-SYNCHRONIZATION OF
IDENTICAL HYPERCHAOTIC CHEN SYSTEMS

Theoretical results: Tn this study, researchers apply the
Adaptive control method to derive new results for the
anti-synchronization of identical uncertain hyperchaotic
Chen systems (Li-Xin et al., 2010). Thus, the master
system 1s described by the hyperchaotic Chen dynamics:

X =alx; —%,)
X, =4x, —10xx, + cx, + 4%, (14)

w2
X, =X, — bx,
X, =—dx

4 1

where, x,-x, are the state variables and a-d are unknown
parameters of the system. The slave system is described
by the controlled hyperchaotic Chen dynamics:

yi=aly, ~ytu

v, =4y, —10y,y, t ¢y, + 4y, +u,
y,=y; ~by, +1,

yy=—dy, +u,

(15)

where, y,-y, are the state variables and u,-u, are the
non-linear controllers to be designed. The hyperchaotic
Chen system (Eq. 14) is a new hyperchaotic system
derived from the Chen system by Li-Xin ef al. (2010). The
system (Eq. 1) 18 hyperchaotic when:

a=35b=3c=2landd=2

The state portrait of the hyperchaotic Chen system
(Eq. 14) is shown in Fig. 4. The anti-synchronization error
is defined as:

e =y, +x;, (i=1,2,3,4) (16)

A simple calculation gives the error dynamics

as:
¢ =ale, —¢)+u,
¢, =4e, —10(y,y; + x,x,) +ce, +4e, +u, (17)
é,=—be, +y,+x} +u,
é,=—de +u,
Let us now define the adaptive functions u,(t)-u,(t)
as:

21

6 (@) 5

(b)

Fig. 4: State orbits of the hyperchaotic Chen system

u(ty=—ale, —e)-ke
u,(t)=—4de +10(y,y, +x,x,)—Ce, —de, ke, (18)
ua(t):{)ea - y§ - Xj —ke,

ugl(‘[):ae1 -k,e,

where, a-d are estimates of a-d, respectively and k;
(1, 2, 3, 4) are positive constants. Substituting Eq. 18 into
17, the error dynamics simplifies to:

& =(a—-4a)e, —e)—ke,
é,=(c—cle, —k,e,
&,=—(b-be, ~ ke,

&, =—(d-dje, —k,e,

(19)

Let us now define the parameter estimation error:

e,=a—4, e,=b—b, e,=c—& e,=d—d (20)

Substituting Eq. 20 into 19, we obtain the error
dynamics as:

& =e(e,—e)-ke

¢, =e.e, ~kye (21)

&, =—ee, —ke,

&, =—epe —k,e,

For the derivation of the update law for adjusting the
estimates of the parameters, the Lyapunov approach is
used. We consider the quadratic Lyapunov function

defined:

v (22)

1 2 2 2 2 2 2 2 2
:E(e1 te te;te, e, te +e te))
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which is a positive definite function on R*. We also note

that:

——4, 8,=—b, & =

Gemd O

Differentiating Eq. 22 along the trajectories of Eq. 21
and noting Eq. 23, we find that:
v _

k1e12 7kze§ 7kae§ 71{463 + 63[61('32_ —e) 7é]+(24)

e,[—e: —l;]+ e.[el —&]+e,[ee, —d]

In view of Eqg. 11, the estimated parameters are
updated by the following law:

3261(62 —e ) tkee,

T

—el +ke, (25)

2
e, +tkoe,

(28
Il

d=-ee, +k.e,

where, k.-k; are positive constants. Substituting Eq. 25
into 24, we obtain:

V=-ke —k,el —k,el —k,el —k.e —kef —k,& —k,e]

(26)
which is a negative definite function on R® Thus by
Lyapunov stability theory (Hahn, 1967), it is immediate
that the anti-synchronization error e, (1, 2, 3, 4) and the
parameter estimation emror egqe; decay to zero
exponentially with time. Hence, we have proved the
following result.

Theorem 2: The identical uncertain hyperchaotic Chen
systems (Eq. 14 and 15) are globally and exponentially
anti-synchromzed by the adaptive control law (Eq. 18)
where the update law for the parameter estimates is given
by Eq. 25and k (1=1,..., 8) are positive constants.

Numerical results: For the numerical simulations, the
fourth-order Runge-Kutta method with time-step h = 107°
is used to solve the two systems of differential Eq. 14 and
15 with the adaptive non-linear controller (Eq. 18).
Researchers take k, =2 for1=1, 2,

The parameters of the hyperchaotic Chen systems
(Eq. 14 and 15) are chosen so that the systems are
hyperchaotic, 1.¢.:

a=35b=3,¢=2landd=2

The initial values of the parameter estimates are taken
as:

22

407, (a)
s
L e
X
-20 ‘I T T T T T T T T 1
1007 (b)V
04 ¥ ¥V
RAR
SO
100 (c)
50 v X,
0'\ ~~~~~~~~~~~~ . N
e A
-50 T T T T T T T T T 1
50 - e
. -\\,/ .
-50 4
-100 T T T T T T T YJu T 1
0 02 04 06 08 I 12 14 16 18 2
Time (sec)

of hyperchaotic Chen

Fig. 5. Anti-synchronization
systems

T
0 1 2 3
Time (sec)

Fig. 6: Parameter estimates i()-d(t)
4(0)=10, b(0)=7, £(0)=20 and d(0)=4

The iwmtial values of the master system (Eq. 14)
are chosen as:

X, (=21, x,(0)=8, x,(0)=15 and x,(0)=34

The mtial values of the slave system (Eq. 15) are
chosen as:

y, (0)=15, y,(0)=10, y,{0)=30 and vy, (0)=24

Figure 5 shows anti-synchronization of the
hyperchaotic Chen systems (Eq. 14 and 15). Figure 6
shows that the estimated values of the parameters, viz.,
a-d converge to the system parameters a=35,b=3, ¢ =21

and d = 2, respectively.
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ADAPTIVE ANTI-SYNCHRONIZATION OF
HYPERCHAOTIC LORENZ AND
HYPERCHAOTIC CHEN SYSTEMS

Theoretical results: Tn this study, researchers apply the
Adaptive control method to derive new results for the
anti-synchronization of uncertain hyperchactic Lorenz
system (Gao ef al., 2007) and hyperchaotic Chen system
(Li-Xin et al., 2010). Thus, the master system is described
by the hyperchaotic Lorenz dynamic:

X =0(X, —%,)
X, =pX, — X, - X, “ %X, (27)
K=K X, 7BX3

X, =TX,X,

where x,-x, are the state variables and o, P, p and r are
unknown parameters of the system. The slave system is
described by the controlled hyperchaotic Chen dynamics:

yi=aly, —y)+y

¥, =4y, ~10yy, + ¢y, + Ay, tu,
Y3:yg —by; tu,

Yo=—dy, tu,

(28)

where y,-y, are the state variables, a-d are unknown
parameters of the system and u-u, are the nonlinear
controllers to be designed. The anti-synchromzation
error is defined as:

e =y +x, (i=1234) (29)

A simple calculation gives the error dynamics as:

& =aly, —y)+o(x, -x)+1u
¢, =4y, ~10y,y; + ¢y, + 4y, +

pPX, — X, —X, — XX, + U, (30)
e, ZY§ —by; +xx, —Bx; tu,
é,=—dy, +1x,x, tu,
Let us now define the adaptive functions
u,(t)-u.(t) as:
u (ty=—aly, —y,) - 6(x, -x) ke,
u, (t)=—4y, +10y,y; - ¢y, — 4y, -
PX, + X, + %, +X,X, + k,e, (313

u, (t)zfyg +BY3 XX, 7BX3 —kye,
u, (t):fctly1 —x,%, —k,e,

23

where, 6.5, p.f and a-d are estimates of g, B, p and r, a-d,
respectively and k,-k, are positive constants. Substituting
Eq. 31 into Eq. 30, the error dynamics simplifies to:

¢ =la-a)y, vy +(c-&ix, —x) ke,
&, =(c—-C)y, + (p-Plx, — ke,
=—(b-byy, —~B-fix, —ke,

=—(d- a)Y1 +(r-x,x, —k,e,

) (32)
e3

CH

Let us now define the parameter estumation error as:

e,=0-6, e;=p-Pp. e,=p—p
e =r—f, e, —a—-a, e =b-b (33)
e,=c—&e,=d—d

Substituting Eq. 33 into Eq. 32, we obtain the error
dynamics as:

¢ =e,(y; — Vi te X, —x) ke
¢, =ey, +teX, —k,e, (34)
€, =&Y, —epX, -k,

€y =gy T e XX, —Kyey

For the derivation of the update law for adjusting the
estimates of the parameters, the Lyapunov approach is
used. Researchers consider the quadratic Lyapunov
function defined by:

1ef+el+eltel+e’+

2
213B

(35)
2 2 2 2 2 2
+ep+er+ea+eb+ec+ed

which is a positive function on R'2. We also note that:

e,=—0, eﬁ:_Ba ep:_p, € =-T, (36)

é,=-a, e=-b, e =—ceé,=—d

Differentiating Eq. 22 along the trajectories of Eq. 21
and noting Eq. 23, we find that:

V:—klef —kzei —kjei —k4ej +
e,le,(x, ~x) 6]+ el e.x, B+
e e.x, P+ e [e,X,X, ~f]+ (37)

e[e(y; —y)—al+e,[-ey, -b]+

ec[GZYZ - 6]+ ea[fe:t}ﬁ 7(?1]

In view of Eq. 37, the estimated parameters are
updated by the following law:
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i 407 (a) v
G=e (X, — X )tk.e, 7

o

=—eX; t+ kyey

T
Il

e,x, + kTep

3.

=e, X, X, + ke,

=€ (Y2 - yl) + kgea

-

b=—ey;+ ke,

c=e,y, t ke,

(38)
where, k;-k, are positive constants. Substituting Eq. 38
into Eq. 37, we obtain:

V=-ke' -k, ke ke ke’ - (39)

2 2 2 2 2 2 2 Y.
kaeﬁ - k7ep —kge; —kge; —k e — kel — ke -50 T T T
0 1 2 3 4 5 6
Time (sec)

which is a negative definite function en R". Thus by _ _ o _
Lyapunov stability theory (Hahn, 1967), it is immediate Fig. 7: Anti-synchronization of hyperchaotic Lorenz and

that the anti-synchronization error ¢, (1, 2, 3, 4) and the hyperchaotic Chen systems
parameter estimation error decay to zero exponentially 50
with time. Hence, we have proved the following result.

40
Theorem 3: The hyperchaotic Lorenz system (Eq. 27)
and hyperchaotic Chen system (Eq. 28) with 30
unknown parameters are globally and exponentially
anti-synchromzed by the adaptive control law (Eq. 31) 20
where the update law for the parameter estimates is
given by Eq. 38 and k (1 =1, ..., 12) are positive constants. 104
Numerical results: For the numerical simulations, the 0

fourth-order Runge-Kutta method with time-step h = 10~
is used to solve the two systems of differential Eq. 27 and

-10

28 with the adaptive non-linear controller (Eq. 31).

Researchers take:
-20

k=2 for I=1,2,..,12
'30 T T L T T T 1
_ 0 1 2 3 4 5 6
The parameters of the hyperchaotic Lorenz system Time (sec)

(Eq. 27) and hyperchactic Chen system (Eqg. 28) are

chosen so that the systems are hyperchaotic, i.e.: Fig. 8: Parameter estimates &(t),B(t), pt).f(t),a(-d(t)

o=10, B=8/3, p=28, r=0.1 The initial values of the master system (Eq. 27) are:

a=35. b=3  o—2l d=2 x,(0)=6, x,(0)=4, x,{0)=12 and x,(0)=18

The initial values of the parameter estimates are: The mitial values of the slave system (Eq. 28) are:

6(0):12 B(O):IO @(0):8 a_ndf(O):z y1(0):21a yz(o):18: Y3(0):20 and y4(0):12

R . R . Figure 7 shows anti-synchronization of the
a{0)=6,b(0)=5,c(0)=4 and d(0)=11 hyperchactic Chen systems (Eq. 27 and 28). Figure &

24
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shows that the estimated values of the parameters,
8,p piand &-d converge to the system parameters
o=10,p =83 p=28r=01,a=35b=3¢c=2land
d = 2, respectively.

CONCLUSION

In this study, researchers have applied Adaptive
control method for the global chaos anti-synchronization
of identical hyperchactic Lorenz systems in 2007, identical
hyperchaotic Chen systems in 2010 and non-identical
hyperchaotic Lorenz and Chen systems with unknown
parameters. The adaptive anti-synchronization results
derived m this study are established using Lyapunov
stability theory. Since, the Lyapunov exponents are not
required for these calculations, the Adaptive non-linear
control method is very effective and convenient to
achieve global chaos anti-synchronization for the
uncertain hyperchaotic systems discussed in this study.
Numerical simulations are also shown for the
anti-synchronization of identical and non-identical
uncertain hyperchaotic Lorenz and hyperchaotic Chen
systems to demonstrate the effectiveness of the adaptive
anti-synchronization schemes derived in this study.

REFERENCES

Alligood, K. T., T. Sauer and I.A. Yorke, 1997. Chaos: An
Introduction to Dynamical Systems. Springer-Verlag,
New York.

Blasius, B., A. Huppert and T.. Stone, 1999. Complex
dynamics and phase synchromzation in spatially
extended ecological system. Nature, 399: 354-359,

Chen, HK., 2005. Global chaos synchronization of new
chaotic systems via nonlinear control. Chaos
Solitons Fractals, 23: 1245-1251.

Chen, 5. and T. Tu, 2002. Synchronization of an uncertain
unified system via adaptive control. Chaos Solitons
Fractals, 14: 643-647.

Cuomo, K.M. and AV. Oppenheim, 1993. Circuit
implementation of synchromzed chaos with
applications to communications. Phys. Rev. Lett.,
71: 65-68.

Gao, T., G. Chen, Z. Chen and S. Cang, 2007. The
generation and circuit implementation of a new
hyperchaos based upon Lorenz system. Phys. Lett.
A, 361: 78-86.

Hahn, W., 1967. The Stability of Motion. Springer-Verlag,
Berlin.

Han, S.K., C. Kerrer and Y. Kuramoto, 1995. Dephasing
and bursting i coupled neural oscillators. Phys. Rev.
Lett., 75: 3190-3193.

25

Ho, M.C. and Y.C. Hung, 2002. Synchronization of two
different chaotic systems using generalized active
control. Phys. Lett. A, 301: 424-428.

Huang, L., R. Feng and M. Wang, 2004. Synchronization
of chaotic systems via nonlinear control. Phys. Lett.
A, 320: 271-275.

Kocarev, L. and U. Parlitz, 1995. General approach for
chaoticsynchromzation — with  applications
communication. Phys. Rev. Lett., 74: 5028-5030.

Konishi, K., M. Hirai and H. Kokame, 1998. Sliding mode
control for a class of chaotic systems. Phys. Lett. A,
245: 511-517.

Lakshmanan, M. and K. Murali, 1996. Chaos in Nonlinear
Oscillators: Controlling and Synchronization. World
Scientific, Smgapore.

Li-Xin, J, D. Hao and H. Meng, 2010. A new four-
dimensional hyperchaotic Chen system and its
generalized synchronization. Chin. Phys. B, 19:
100501-100517.

Lu,J, X Wu, X Han and J. Lu, 2004, Adaptive feedback
stabilization of a unified chaotic system. Phys. Lett.
A, 329: 327-333.

Ott, E., C. Grebogi and J.A. Yorke, 1990. Controlling
chaos. Phys. Rev. Lett., 64: 1196-1199.

Park, JH. and OM. Kwon, 2003. A novel criterion for
delayed feedback control of time-delay chaotic
systems. Chaos Solitons Fractals, 17: 709-716.

Pecora, L.M. and T.L. Carroll, 1990. Synchronization in
chaotic systems. Phys. Rev. Lett., 64: 821-824.

Sundarapandian, V. and R. Karthikeyan, 2011a. Global
chaos synchronization of Chen and Cai systems by
active nonlinear control. CIIT Int. T. Digital Signal
Process., 3: 140-144.

Sundarapandian, V. and R. Karthikeyan, 2011b. Global
chaos synchromization of hyperchaotic Liu and
hyperchaotic Chen systems by active nonlinear
control. CIIT Int. J. Dagital Signal Process., 3: 134-139.

Tao, Y., 1999. Chaotic secure communication systems-

to

history and new results. Telecommun. Rev.,
9: 597-634.

Yau, H.T., 2004. Design of adaptive sliding mode
controller  for chaos  synchronization with

uncertainties. Chaos Solitons Fractals, 22: 341-347.

Yu, Y.G. and 8.C. Zhang, 2006. Adaptive backstepping
synchromzation of uncertain chaotic systems. Chaos
Solitons Fractals, 27: 1369-1375.

Zhao, J. and I. Lu, 2008. Usin.g sampled-data feedback
control and linear feedback synchronization in a new
hyperchaotic system. Chaos Solitons Fractals,
35: 376-382.



