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Localization of Mobile Robots with RFID Technology and
Expectation Maximization Algorithm
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Abstract: In this study, we proposed a new way to localize mobile robots in a very noisy environment. The
mobile robot is equipped with an active RFID reader and some tags are placed in the room to provide RF
Beacons in order that the robot can localize itself with the known tag geographical locations. The RFID
equipments are working in 916 MHz band and the tags are battery enabled so the range of the experiment can
effectively increase to 50 m. First there 1s a model estumated for the noise in the environment, which can be
expressed as a Gaussians distribution then the RFID propagation model 15 obtained from a series of experimental
tests. There are two different methods for noisy data filtering, Kalman Filtering as the best ever used method
and a new method of particle filters with expectation maximization core. The diversity and multi-path effects in
this experiment were considered as unwanted signal effects. The results show a good convergence in the EM
method after very low iterations. The advantage of the EM method to Kalman filtering is not relying on the
initial values. The precision of this new method in a normal environemt is between 4-7 cm in >10 iterations.
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INTRODUCTION

There are different methods to localize a mobile robot.
The most famous method 1s GPS, which 1s limited to
outdoor environment as the property of satellites line
of site.

There are some other ways using wheel encoders,
Gyros and accelerometers, which can measure and
calculate Robot movements or rotations and as the results
its relational location. But moest of these metheds are valid
just for short ranges and there is no judgment of the
accuracy of the location estimation after some moves. For
example, tropological landmark system (Leonard and
Whyte, 1991) can sense some marks on the ground with
special camera, laser or sound waves, but this requires a
high precision of mstalling marks over the ground and
with any reason the sensation can be blocked so the
Robot may loose the marks and restoring the right path
may be a hard worlk.

The most localization problems have used bayes
algorithms (Fox et al., 2003) for filtering the data, which
these algorithms are suitable for application with ideal
sensors without any internal errors. The best accuracy
values for localizations in all experiments does not <5 cm
(Deans and Herbert, 2008).

In this study, we propose a new method to localize
the mobile robot by means of estimating the distance

between the robot and Radio Tags put in the environment
with known fixed or random geometry (future work). The
distance to each radio Tag 1s estimated by its received
signal strength m the robot. The advantage of radio
localization is not relying on the line of sight between the
robot and the tags so the method may be applied in the
environments even with lots of blockings. As the
proposed way uses RFID active tags with memory inside,
the problem of relativity is already solved, which means
that the estimated distance of each tag is exactly related
to a specific tag and may not be misrelated to others.

In this study, there are two series of data; one 1s the
real location and of the mobile robot which 1s obtained by
a grid environment with 10 cm square houses. The second
data 13 obtamed by the measurements of RFID sensors
and related algorithms.

In the 1st step, there is a precise analysis of the Noise
model in the environment and with assumption of such a
noise model and a known propagation model the
localization algorithm is applied to the data.

Kalman filtering has shown suitable and acceptable
results in the past experiments especially in a noisy
enviromment (Kantor and Smgh, 2002), so this algorithm
can be the reference of the test results.

The Kalman filter algorithm 1s very sensitive to
sensor internal noises and the mitial parameters have a
vital affect on the results (Kurth ef al., 2003).
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MNoize i ehing and mearurensemt va bd oy bnadke: Before
the main expenment, we have to dhtain a tme model of
the Holse in the enviroronent and to define wher are
the bourdares of the wahdity of each taz wad ESEI
[Fecaived Signal 5 trength Indicatoe).

3o, the mobile robotwhich 1s equipped with a EFID
reader 15 located to differert Jmown distances to a
typical Tagz ard with noach iteraton the ES5T 15 meoorded
per each distance ard the emwor of each read vahie is
obtained. Sceme typical meord emors are shoarn inthe
Fig. 1.

As shoem mm Fig. 1 for excample in 128 m distance
there are F0 read wabies, which the murber of wad
records 15 shown m honzontal axis and the distance
mesureient enor 5 shown m the werbeal axis, These
figures will propose that the exor fizure 15 very sinular to
a Camssian distibnton ouree. So, we will sappose the
notse model a Gans sian nods e mode].

With this assumphon, we can assame the error with
avariatce and mean vahie for a Gans sian distdbution All
experitents willbe recomed a5 the mean wahe ard the
covatatire will shoer the uncertanty of sach read weozd
senes. Fizure 2amd 3 shoor the mean ard varance of each

measurement. Inthe Fiz. 2 it shows that 1 the distances
=3 m and =21 m the vaname are high 50 the
measurerents have lost they validity in these linuts.

But note that these meammments awe dore for a
typical ervirormrert and ths offline test noastbe done par
each expenmental ervirorrvent.

EFIDpropazaion model anab-sie: 4s the EFID tags and
readerused in this expenmernt ave worling n 916 MH=
frequency charmel, a popagaton model in the simualar
project (Seidel ard Fappaport, 1590 with the simular
fiequency band in indooy exviormrert 1s used for this
aim

Acoording to fhis model each read ES5T valie has
the folloerme mlaton wath dis tance betereen the tag and
the wader: ES51w PTA"

While, the FT 15 the recered woltage of the sert
siznal, d 15 the distarce betwreen the transnntter (eader)
and the ®eerver [TAG) and re (-2, -0.10.

This 15 an 1d=al model for propazation, wlile marr
pararreters such & nmlb-path, electrormasnete noise amd
device irternal nodse ave affecting this model. The Eq. 1
canbe expiessed more precsewith Eq. 2.
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While,

RSSI ;= The RSSI read in node j when the signal
transmitted from i

PT; = The voltage of the signal when sent from i

d; The distance between i and j as we are looking
for d;, the equation can be expressed like as:

ijo

1
b (—) +
! (RSSIHJ)

c, =a.dj (2)
The a;can be supposed equal to 1 for more simplicity.
The errors are identified as the following terms:

TE; |(estimate distances),-(true distance);|
PE; = TE/(true distance); 3)

In a real indoor experiment with 14 tags and a reader
the read RSSI in different distances are shown in Fig. 4.

As shown in Fig. 4, finding a linear relation
between RSSI  and distance is impossible. It is
remarkable that the best values for parameter n according

260
240 .
220 +
200 f
wn)
2180 f
160
140 ¢
120
100
0

- csmee s oem
o msunew »
oo snommme o

- o o
comomammes

o comme o oum

. mennam

o snoumme o
" ousmue ¢

0.5 1 1.5 2 2.5 3
Distance

Fig. 4: The relation of RSSI and distance
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in the experiment

to Nguyen and Rattentbury (2008) is not valid for
this test as the best values is between -0.5 to 0.2 here. So,
the propagation model in Eq. 4 must be change back to
Eq. 5:

b,.RSSI,; + ¢; = a,.d"; 4

With assumption of this equation as our propagation
model, the following values are obtained:

Test set Geom. Avg. PE (%) Avg. TE (m) Optimal n
1 17.45 1.74 0.01
2 16.22 1.49 0.02
3 15.59 1.30 -0.01
4 16.62 1.40 -0.02
5 12.98 1.15 0.01

Although, these values show that the model in
Eq. 5 fits more our experiment but still does not explain
why the estimated distances are not identical to the RSSI.
The reason of such error can be explained according to
Fig. 5.

The Fig. 5 shows that the error follows a rule in all
readings: the lower distances are over estimated and the
higher distances are under estimated.

The Fig. 5 explicitly shows that the experiment done
on 16 tags, which are located in 4x4 rows obeys a pattern
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for error it distance estimation InthisFig 5, the read data
ate categotized in clusters in hotizontal direction. & mean
value for each cluster is shown as a black horzontal line
it each cluster. The slope line in Wack shows the best line
fitting of all m eans. All of overestimations are dlustrated
inFig 5.

To obtan an arithmetic model from the ex perimerts,
we consider the following dowisrard  exponentia
Eg. 5:

7= as® )]

This is a general ecquation which its param eters
a and b omust be estimated witha welghted non
linear tegressionn The formoda for nonlinear regression
is

11

s= Vw3, - £(x, 3 (6)

Itn this experimoent, the weights are the itrverse of
statidard devdation of the experim etits:
w=1/8" )]
Itnthe Fig 6, this standard deviation obtained from

the real experimernt is shown,
With the above assumptions and the regression
formudathere will be avwalid model for the relation bebareen

RE31 and distance:
x =1Mhlog (u-vwfa)

Itithe Fig 7 thisrelationis shown
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MATERIALS AND METHODS

The required data for this test is obtained from a
mobile robot moving on a grid surface with 10x10 cm
houses. There is a RFID reader installed on this robot
with its antenna which communicates with tags located
around the surface. The data is read with a laptop
connected to the reader via a serial cable. When a tag
answers to the call of the reader, its RSSI from that
specific TAG transmitted to the host computer
(laptop). While, according to the theory introduced in
the previous study, there is a expectation that the read
RSSI of each tag has a nonlmear relation with the
correspondence distance, the RSSI is converted to its
relevant distant in meter according to Eq. 8.

The tags are installed in the height 45.7 cm from the
ground, which is the height of the antenna of the robot.
The envirenment of the experiment is a 4x5 m room. The
tags are located around the room with 1 m distance of
each other as shown in Fig. 8. The robot is programmed to

18

move in a pre assigned path.
RESULTS AND DISCUSSION

Trilateration for geometric localization: Now with the
method RFID propagation model analysis, we can
estimate robot distance from each Tag with a Guasian
error model assumption.

The distance of the robot from a single tag can not
lead us to the geometry of the robot. But distances to
each three Tags can help us to calculate the location of
the robot with Trilateration method (Awad et al., 2007).
The Fig. 9 illustrates the method. Here, the robot location
1s B, which 1s unknown and te be calculated. There are
three tags located mn P,-P;. Distances 1,-r; are known. So
B (x, y, z) can be calculated by:
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Fig. 9: Trilateration method to calculate geometry
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With the x-z calculated from each three tag from 14
total tags there are 364 probabilities of robot location:

P - {5} = 364
3

These 364 values can supposed as a probability
cloud, which is showed in Fig. 10.

Expectation maximization method for robot location
identification: As the noise model in the environment is
supposed as a Gussian noise according noise modeling
and measurement validity limits, The probability cloud of
the robot location can be supposed as a Gussian
probability function too.

To estimate the location of the robot in this
probability cloud, first the density of the cloud must be
approximated. The density function of this cloud Matrix
in one coordination is Zhang et al. (2008):
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+ Repeat the following two steps fort=10,1, 2,...
* H-step:
s Calculate the expectation value of log-
likelihood of complete data conditioned by
observed sample and the current solution 6®

Q86" = [E[logp(x(8) | v.8"]] (8)

where the summation is taken over all samples
* M-step:

Fig. 10: Probability cloud of the robot location o
» Let 8" be such 6 that maximizes Q (66"

’gg:;ﬁ;’f;m cloud With the proposed formula and the method in all
2.5 - @ Robot location with EM three coordinations, the density of the probibilty function
5 | @ Robot location with simple mean will be calculated. The calculated value for the experiment

can be shown n the Fig. 11.

As shown in Fig. 11, the obtained value with EM
method is very close to the value calculated with mean
value of the probibilty matrix. This neighborhood shows
the validity of the method results in an ideal environemnt.

But as this method follows the Guassian probibility
characteristics all probable noise effects, which are
Guassian are considered while the simple mean method

does not defeat such effects.
Fig. 11: The robot location with Kalman Filter Mean and

with EM Method CONCLUSION
wow & The noise modeling of an indoor environment and
B)y=>» —=— §) ER £ =0
P(x[%.0) gEkék & (x10). = E validation of read data shows that the noise model obeys

a rule with a Guasian characteristic. The propagation
model of the signals with 916 MHz frequency in the
environment is obtained exactly with a weighted least
square regression and validates the ranges of the read
model with a guasian model. At last, the density of the
probailbity cloud from tralateration iterations of each three
tag can be found with EM method. This method is exactly
applicable to a model to find the mean value when the
model is obeying Gusian characteristics.

The experimental resuls shows a neighborhood with

So, the aim of EM method is maximizing the above
equation per all values for x:

Ylogp(x|E,0)

We suppose a z value as:

pxz|E8")= & g (x8)) Kalman filter method result value and showed very close
N values to the real measured robot location on the grid
surface.
The above function 1s a Normal distribution function The precision of this method with normal environemt
with a known mean and covariance: is between 4-7 cm in >10 experiments.
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