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Abstract: A new algorithm for feature selection based on information maximization is derived This algorithm
performs subspace mapping from multi-channel signals, where Network Modules (NM) are used to perform the
mapping for each of the channels. The algorithm is based on maximizing the Mutual Information (MT) between
mput and output units of each NM and between output units of different NMs. Such formulation leads to
substantial redundancy reduction in output units, in addition to extraction of higher order features from input

units that exhibit coherence across time and/or space useful in classification problems. We discuss the
performance of the proposed algorithm using two scenarios, one dealing with the classification of EEG data
while, the second 1s a speech application dealing with digit classification.
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INTRODUCTION

The problem of subspace mapping has attracted a lot
of attention among researchers. One of the well
established solutions to the problem Principal
Component Analysis (PCA), which maps correlated input
units into uncorrelated output umts (Devijver and
Kittler, 1982). Canonical Correlation Analysis (CCA)
(Mardia et ai, 1979), on the other hand, has been
proposed as an alternative for the case of two variable
sets and aims at maximizing correlation between output
units by linearly transforming inputs.

Many Artificial Neural Networks (ANNs) have been
developed to implement PCA (Karhunen and Joutesnsalo,
1995; Miao and Hua, 1998; Al-Ani and Deriche, 2001;
Torkkola, 2003) and CCA (Lai and Fyfe, 1999). However,
no attempt has been made to combine the power of the
two techmques. There 1s a clear advantage m combining
PCA and CCA, then generalizing the approach to multiple
chammnels. To achieve tlus, we propose an mformation
theoretic based approach, which we name the Information
Maximization Feature Selection (IMFS) algorithm. The
approach is based on combining the infomax algorithm
proposed by Linsker (1988, 1997, 2005) and the Tmax
algorithm developed by Becker (1996), Slonim and Weiss
(2003), Torkkola (2003) and Agakov and Barber (2005).
Two applications (EEG, data, speech data) to evaluate the
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performance of the proposed algorithm.

Correlation based techniques: One of the most widely
used dimension reduction techniques i1s Principal
Component Analysis (PCA) (Deviyver and Kittler, 1982).
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Starting with an input x of N units, PCA finds the
directions along, which the variance is maximal. If >.. >
are the first k eigenvalues of the covariance matrix, R, then
the corresponding eigenvectors a,....a, become the first k
principal components of R. It can be proven that PCA is
an optimal linear dimension reduction technique in mean-
square sense, which ensures that output umits are
uncorrelated.

For the cases of two variable sets, CCA has been
developed to summarize relationship between the output
units by finding a linear combination, for each set, which
results in the highest correlation between the output
sets. If inputs x and y are of dimension N, then CCA
(Mardia et al., 1979) finds the two M dimensional vectors,
such that the correlation between these is maximal.

Information based techniques: The infomax principle was
first developed by Linsker (1988) and was nspired from
Hebb’s rule: 1f unit a 1s one of the mput umts contributing
to output unit b and if a tends to agree with b, then the
future contribution that the firing of a makes to that of b
is increased. Tn other words, connection strengths are
modifying according to the degree of dependency
between input and output, which acts to generate an
output unit whose output activity preserves maximum
information about the input activity, subject to
constraints.

For the case of two channels, Becker (1996) proposed
the Imax algorithm, which was mspired from human
sensory processing. A major feature of the sensory data
15 coherence across time and across different sensory
chanmels, where coherence means that one part of the
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signal can somehow be predicted from another part. Tt
has been argued that spatio-temporal and multi-sensory
coherence provides important cues for representing
signals in space and time and are useful in object
localization and identification. The main idea is that two
different NMs can learn to extract features that are
coherent across their mnputs.

MATERIALS AND METHODS

The IMFS algorithm

Maximizing MI within a NM: Meximizing MI between the
mput and output units of a single NM 1s equivalent to
maximizing the total information conveyed by the output
units and mimmizing the mformation that the output umits
comvey to someone, who has prior knowledge about the
mput units. In this study, we consider the case, where we
want to map an (Nx1) input, x, mnto an (Mx1) output, p,
with M<N, p = Wx+n. Where, n 15 additive noise,
uncorrelated with x. Using basic concepts from
mformation theory and assuming that both mput and
noise are Gaussian, the MI becomes:

I(p, x) = h(p) + h(x) - h(p, x)
= h(p) - hin)
=0.5log [[R,[] - 0.510g[|R ]

(1)

where:
hi(p) = The entropy
R The covariance matrix of p

R=WRW+R

Maximizing MI between x and p can be achieved
using the learning rule:

Alpix) _ 05 dlog[| Ry []
oW ' awW
= (WR_ W +R_'WR,,

(2)

The optimal value for M can be set based on the
amount of mformation lost in the output umits n a similar
way to retention of eigen values in PCA.

Maximizing MI between the output units of two different
NMs: Unlike the Imax algorithm that considers the two
observed signals at the output of each NM as noisy
versions of the same underlying signal, p=x+n,q=x+
m, we consider here that two different signals are used as
mput umts to each NM and the objective 1s to transform
these linearly to the output units such that the MI
between the output units of the two NMs is maximized,
p=Wx—+n, q=Vy+m, where W and V are the weights of
the two NMs. Let a = [p q], then (Fig. 1):
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Fig. 1: Proposed MIFS algorithm

I(p,q) = hip) + h{q} - hip,q)
=0.5log[(2re)" |R, |]

M M (3)
+0.5log[(Zme)" | R []-0.5log[(2me)™ | R, []
=0.5log[|R,, |/|R R R, R[]

Ra _ {Rpp qu:|
RRP qu (4)
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VR W' VR VT+R_,

Meaximizing MI between p and q can be achieved by
updating W, (respectively V) according to the learning

rule:
ala(l';\;[q) =R, 'R, (R, -R R, R,
*[VR,, -R, R, "WR_]
and
W=w + o LB s)
oW

The maximization 1s constramned to a normalized W
((WW = 1), which can be achieved using Lagrange
multipliers.

Extension to multiple channels: Equation 2 and 5 were
first re-derived for the case of three chammels with closed
form expressions obtained for updating the weighting
matrices for each of the three Chamnels. However, the
derivation led to complex expressions for I(p; q; 1)U,
(respectively for W and V). To reduce the complexity
resulting from the above, we propose here a fast
approximation using pairs of channels. Tn the case of 4
channels (p, g, 1, s), for example, the updating rule for
channel 1 (W) becomes:
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alipg) | Alpy) | Slipis)

W AW AW 8l(p;x)
W=W+a AEX gy
+Mgr) | Ollg.s) | alixs) W
W AW AW

where, . and . are the learning rates used to weight the
outer atd inrer information loss. Even though, the Eg. &
is not optimal, the extensive simulations have shown that
most of the M within channels is preserved, while, still
maintaning a reasonable amourt of nform ation between
chatinels.

RESULT S AND DISCU S50

Choosing appropriate learning rates: "We caried
experiments on both speechiclassificati on) and EEG daa.
Here, we present the results from analyzing EEG data from
neighbhoring charmmels of an £ sec segment EEG data tha
represent the left and right movements The 13 featares
wete estimmated from the data and used asinga to the two
HMhis. The fedwres were dominart frequency and its
amplitude, average power in main lobe, energy, zero
crogsing atd mamber of extreme of each segment average
halfoaraves amplitade and dwation and poles of AR
model.

Figire 2a and b display the effect of  and . on
updating W to maximize M within the toro NIz and
between their outpit wnits wersus the troe waluesof
I (psx) andl (p; o).

From Fig. 2a and b, we notice that by ordy updating
the weights to maximize MI between the two NI, we
catint guatantee moaritmwn I within each one of Nz
anid vice versa. Even though, an optitmal chodce for | and
.ig application dependent, we found that an initial choice
of .= 0.8 and nre 172, = 02 (where, il 1072 isthe namber
of charmel paird) leads to a minimowm information
preservation of 30% or more (fine tuning these param eters
15 possible depending on the application of interesf).

It iz worth merfioning that the computational cost
irrvolved iz not significant, where adjusting the weight
matrices for 100 iterations using Matlab routine naning
under conventional PO erreit orumertt takes <1 second (3
matrix irversi ons of M= at most).

Comp arison to PCA and CCA: We first carried some
initial experimernts with two channels. By varing the
wvalues of . and . between 0 and 1, we could see the IMFS
cotver ging towards either the PCA (=00 ar the CC& (]
=M. However, in contrast with PCA and CC A the IMF3
ig ahle tomavimize both I 2 andIlp; ) a4 the same time
(writh <10% in information loss).
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Fig 2: I betweena): Trgndt set x and outpt set poand B):
Cratpnat sets poand o wsing 2-chante]l EEG data

W then carried an ex perim ent vsing five charmels of
EEG and compared the performance of the approximate
IMFE using subsets of 2 and 3 charmel s with that of PCA
(Fig. 3a ).

Ewven though, these two versions of the IMF3 only
achiewve near optimal resalts for gy o; ¢ 5 ), they still
outperform, by far, PCA. In addition, the IMFS can be
uged for aty mamber of chanmnels withowt the need to
derive complex formodas for the learning rules, while
achi eving wery promising results.

& gecotud expetimert in speech classification based
oty 2-chanel speech data generated by artificially adding
white Gaussian noise to the originad data obtained from
the TIMIT database. The experiment consists of
classifying the 10 digts The featres obtained by
applying PCA, CCA and HIM with the mamber of outpna
elem ents ranging from 1-40 were usedto represent speech
segments that are fed to an arfificial neural nebarotk. The
featwres usedinclude Linear Predict on C oefficients (LPC,
Line Spectriwn Pair (LEF), Eeflection Coefficient (RC,
Cepstrin Coefficients (CC), Mel Frequeney Cepstrm
Coefficients (WMEFCC), Filter Bark Coefficients (FB) and
Wavelet Coefficients (WA,

Figure 3b shows the average classification acowacy
of twositnulated speech charmels for different tnynber of
outpt elements It cat be shown from Fig 3b that the
petformatice of the PCA iz better than thatof CTA
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Fig. 3: Comparison between PCA, CCA and HIM, a). . =
1.0,, = 0.0 using 2-channel EEG data and b): . = 0.0,
.= 1.0 using 2-channel speech data

(Campernolle et al., 2005). The proposed algorithm, HIM,
on the other hand, approaches the PCA when M 1s small,
then it outperforms PCA when there are >20 elements. The
performance obtained was better the results discussed in
similar earlier research (Campernolle et al., 2005).

Several other experiments were carried to test the
power of the algorithm in the presence of noise and for
the case of the generalized Gaussian distributions with
very promising results.

CONCLUSION

A new feature extraction algorithm based on the
maximization of MI between the output umts of different
NMs as well as between the input and output umts of
individual NMs has been developed. We have shown that
by assigning appropriate learning rates to the two cost
functions, a new cost function that preserves mformation
content, between the two NMs and within each NM, can
be obtained.

The initial experimental results using synthetic
and real EEG and speech data showed clearly the
power of the proposed algorthm as compared to PCA
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and CCA and the previously developed Infomax and
Imax algorithms. The concept proposed here
novel with a great potential in optimal feature extraction
from multi-channel data using nformation theory
concepts.

1s

ACKNOWLEDGEMENTS

The author would like to thank King Fahd University
of Petroleum and Minerals (KFUPM) and King Abdulaziz
City for Science and Technology (KACST), Saudi Arabia,
for supporting the research work discussed in this study.

REFERENCES

Agakov, F. and D. Barber, 2005. Varational information
maximization for neural coding. Lecture Notes in
Computer Science, LNCS, 3316/2004: 543-548,
DOI 10.1007/b103766, http:/fwww .springerlink. com/
content/ dg2833x65kger3ag.

Al-Ani, A. and M. Deriche, 2001. A dempster-shafer
theory of evidence approach for combining trained
neural networks. The 2001 TEEE Int. Symposium on
Circuits and Syst. ISCAS, 2, 3: 703-706. DOI: 10.1109/
ISCAS.2001.921429, ieeexplore.icee.org/iel5/7344/
19927/00921 429 .pdf In ISCAS 2001

Becker, S., 1996, Mutual mformation maximization: Models
of cortical self orgamization. Network: Computation in
Neural Syst., 7 (2); 7-31. (electromc) 0954-898X
(paper). http://www.informaworld. com/smppr/title~
db=all~content=t713663148.

Campernolle, D., R. Cools, M. Matton and M. Wachter,
2005, Maximum mutual mnformation training of
distance measures for template based speech

International Conference on

Speech and Computer, pp: 511-514. www .esat.kuleu-

ven.be/psifspraak/cgi-bin/get file.cgi?/mmatton/

recognition. Proc.

specom05/paper/paper. pdf.

Devyver, P.A. and J. Kittler, 1982. Pattern recognition:
A statistical approach. Prentice-Hall, ISBN: 10-
0136542360. http://personal ee.surrey.ac.uk/Personal/
] Kittler/cv. hitml.

Karhunen, J. and J. Joutesnsalo, 1995. Generalizations of
principal component analysis, optimization problems
and neural networks. Neural Networks, 8 (4): 549-562.
DOL 10.1016/0893-6080(94)00098-7.  http:/fwww.
sciencedirect.com/science? ob=ArticleURL& udi=
B6TO8-4031CR2-18& user=1074406& rdoc=1&
fmt=& orig=search& sort=d&view=c& acct=C000
051301& version=1& urlVersion=0& userid=1074
406&md5=7132c¢f557384c7a245a7f1 86¢6daal bb.



Int. J. Signal Syst. Control Eng. Appl, 2 (1): 30-34, 2009

Lai, P.L. and C. Fyfe, 1999. A neural implementation of
canonical correlation analysis. Neural Networks,
12(10):1391-1397. DOL: 10.1016/50893-6080(99)00075.
http: /fwww.sciencedirect. com/sciences/article/B6TOR-

3XXCKCT-5/2/5d45¢4fe1 0450c5b87042al Sc4e6502.

Lmsker, R., 1988. Self-organization 1in perceptual
network. Computer, 21 (3): 105-117. DOT: 10.1109/2.36.
http://portal.acm.org/citation.cfim 7id=47869#.

Linsker, R., 1997. A local learning rule that enables
information maximization for arbittary input
distributions. Neural Computation, 9 (8): 1661-1665.
DOI: 10.1162/neco0.1997.9.8.1661. http://portal.acm.
org/citation.cfm?id=1246445.

Lmsker, R., 2005 Improved local learmng rule for
information maximization and related applications.
Neural Networks, 18 (3): 261-265. DOL 10.10164.
neunet.2005.01.002.  http://www sciencedirect.com/
science/article/B6T08-4FV351G-1/2/c4d87e55al 6178
ddf591 deceaa595¢08.

34

Mardia, K.V., J. Ken and 1. Bibby, 1979. Multivariate
analysis. Academic Press. DOT: 10.1002/bim;j.47102-
40520, http://www3.1interscience. wiley.com/journal/
114077456/abstract?CRETRY=1&SRETRY=0.

Miao, Y. and Y. Hua, 1998. Fast subspace tracking
and neural network learning by anovel information
criterion. IEEE. Trans. Signal Process., 46: 1967-1979.
http://1eeexplore.ieee.org/stamp/stamp.jsp?amumbe
r=00700968.

Slomm, N. and Y. Weiss, 2003. Maximum likelihood and
the mformation bottleneck. Adv. Neural Inform.
Process. Syst., 15: 335-342. http:/Awww.cs.huji.ac.il/~
yweiss/MLandIB7 ps.

Torkkola, K., 2003. Learning boolean concepts in the
presence of many irrelevant features. J. Machine
Learming Res., 3: 1415-1438. http://jmlr.csail mit.edu/
papers/volume3/torldkolaO3a/torklkcola03a. pdf.



