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Abstract: Development trends in industrial electrical drives indicate that the next generation of electrical drives
will include some type of sensorless control. Controlled induction motor (IM) drives without speed sensors
have the attractions of low cost and high rehiability due to the absence of the mechanical component and its
sensor cable. Speed estimation schemes that allow lugh dynamic performances are based on IM vector control.
However, volt per Hertz (V/f) IM drives law produces satisfactory precision in speed sensorless control and
is adequate for low dynamics applications. The proposed speed control scheme presented in this study using
a simple low cost IM scalar control consists of a neural network controller (NNC) and a neural network speed
estimator (NNSE). The NNC 1s used to produce a control force so that the motor speed can accurately tracks
the reference command. The NNSE 1s trained off line by using the error back-propagation algorithm. The
estimated speed is then fed back inthe speed control loop and the speed-sensorless is then realized. A
back-propagation algorithm is used as the learning algorithm to automatically adjust the weights of the NNC
and NNSE m order to mimimize the performance functions. The proposed sensorless control scheme has shown
good performance in the transient and steady states and also at either variable-speed operations and load
torque disturbances. Both computer simulations and experimental results demonstrate that the proposed control
scheme is able to obtain robust speed sensorless TM control.

Key words: Scalar control, Neural Network Controller (NNC), Neural Network Speed Estimator (NNSE),
Baclk-propagation algorithm, induction motor drive

INTRODUCTION range of speed and transient states using classical

methods (conventional PI controller). A high-performance

Many years ago, thanks to the development of fast
calculators (real time), IM were widely used m industry
because of their reliability, ruggedness and relatively low
cost. In contrast to DC motors, they could be used in
aggressive environments since there were no problem
with spark and corrosion (Bensalem and Sbita, 2006). In
fact, the TM belongs to the class of the highly coupled
systems. The practical task is to solve the IM control
problem dynamic performance, energy efficiency,
robustness and simple implementation (Bensalem et al.,
2007, Ben Hamed and Shita, 2006). Because of the
advances m power electronmics and microprocessors, the
IM drive used in variable speed control has become more
attractive (Abbondanti, 1977). In fact, the TM is a highly
coupled, nonlinear dynamic plant and its parameters vary
with time and the operating conditions. Therefore, it 1s
very difficult to obtain good performance for an entire

servo system must have good dynamic speed command
tracking and load regulating responses.

In this study, the operation of IM 1s made using the
so-called constant volts per hertz (V/f) mode which has
been known for last decades and its principle i1s well
understood (Bose, 1996, Tsuji et al. 2006). With the
introduction of solid state mverters, the constant V/f
control became popular and the great majority of variable-
speed drives m operation today are of this type
(Kioskeredis and Margaris, 1996, Garcia et al., 1998). In
fact, scalar control means that the variables are controlled
only in magnitude and the feedback and command signals
are proportional to de quantities (Bose, 1996). A scalar
control method can only drive the stator frequency using
a voltage or a current as a command. Among the scalar
method known to control an IM, one assumes that by
varying the stator voltages in proportion with frequency,
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the torque is kept constant. The advantages of this
control technique are its simplicity, its easiness and
quickness to program which requiring only few
calculation capabilities (Rajashekara ef al., 1996).

Nowadays, the need for sensorless IM speed control
has become widely recognized because of the cost and
fragility of a mechanical speed sensor and because of the
difficulty of mnstalling the sensor in many applications
(Shita et al, 2006). For these reasons many attempts
were made in the past to extract the IM speed
signal (Toliyat and Campbell, 2004; Hurst ef al, 1998,
Vas, 1998).

To overcome problems related to the use of a shaft
mechanical speed transducers, an IM neural network
speed estimator using a multilayer artificial neural network
(ANN) with 2 hidden layers 1s proposed in this study.
ANN has been applied for a few cases mainly in the
control of converters and drives, but its application in
estimation, particularly with time-varying input signals,
15 practically new (Boldea and Nasar, 2005; Haghgoeian
et al., 2005, Shao and Li, 2000). Here, the feed forward
neural networlk technique is explored for feedback signals
estimation of a scalar-controlled IM drive. Neural
networks have been one of the most mnteresting topics n
the control community because they have the ability to
treat many problems that cannot be handled by traditional
analytic approaches (Seong ef al., 2001). In general, a feed
forward multilayer neural network is the most prevalent
neural network architecture for identification and control
applications (Kuchar et al., 2004; Tsai-Tuin and Tien-
Chien, 2006; Abboud, 2008). A widely used tramung
method for feed forward multilayer neural networks 1s the
back propagation algorithm developed (Kuand Lee, 1995).
ANN can be classified as feed forward networks and
recurrent neural networks. Feed forward neural networks
can approximate a continuous function to an arbitrary
degree of accuracy. However, feed forward neural network
is a static mapping, which can not represent a dynamic
mapping well. Although this problem can be solved by
using tapped delays, it requires a large number of neurons
to represent dynamical responses in the time domain. ITn
addition, adaptive neural networks are able to represent
dynamic mappmg very well and store the mternal
mformation for updating weight later (Grellet and Clerc,
1999). ANN have been recently attracting a great attention
in the field of power electronics. This is due to their
mherent parallelism which allows high speed processing
and permits 1mplementation of real tune control
applications. They also possess the ability to perform in
noisy environments and are tolerant to faults and to
missing data (Liang and Wang, 2000; Michael and Harely,
1995).
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In this research, a speed control scheme with a neural
network controller and a neural network speed estimator
is designed and applied to a fully digital controlled TM. A
widely used baclk-propagation algorithm is adapted as the
learning algorithm, in order to automatically adjust the
parameters of the NNC and NNSE. The overall proposed
control scheme 15 tested by an extensive sunulation and
experimental works and obtained results demonstrate the
effectiveness of the proposed sensorless control scheme.

INDUCTION MOTOR AND SCALAR
STRATEGY DRIVES

Scalar control as the name indicates, 15 due to
magnitude variation of the control variables only and
disregards the coupling effect in the machine. Scalar-
controlled drives have been widely used in industry
the fact that they are easy to implement (Bose, 1996;
Ba-razzouk et al, 1997, Hurst et al, 1998). As shownin
Fig. 1, the proposed strategy is based on simplified V/f
control scheme with stator frequency regulation. For
adjustable speed applications, voltage 13 required to be
proportional to frequency so that the flux remains
constant (¢, = V/w,), neglecting the stator resistance
voltage drop. The block diagram of the used speed
control method 1s shown in Fig. 1.

The principal control objectives are that the drive
should follow the desired command as closely as possible
and any type of external disturbances should be rejected.
With a voltage-fed PWM mverter, both voltage and
frequency can be controlled to control the machine flux at
a constant value. As clearly illustrated m Fig. 1, the
closed-loop speed control adds some performances
improvement to the open-loop scalar control: the motor
speed 13 compared with the command speed and the error
generates the synchronous angular speed w, command
through a PI compensator and a limiter. The generated
signal is then used to obtamn the frequency and voltage
commands.

AC supply
3 phases
[ 11
Diode
rectifier

-

Fig. 1: Scalar control scheme
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Scalar control strategy is based on the steady state
operation using the mathematical equations governing
electrical dynamic of an IM 1n a synchronous rotating
frame 1n the steady state, we obtain (Zidam et al., 2002,
Ben et al., 2007):

Vds = Rs ids_("‘)sd)qs (1)

Vqs = Rs iqs + msd)ds (2)
Vdr - Rs idr -0y d)qr (3)
Vqr - Rr iqr + ("‘)sl d)dr (4)

Where,

w, and w, The electrical synchronous and slip

speeds.

1 and The d, g axis voltages.

1 and The d, g stator axis currents.

i,andi, : Thed, g rotor currents.

¢y and ¢, © The d, g stator fluxes.

¢pand ¢, : Thed, q rotor fluxes.

R,and R, : The stator and the rotor resistances.

The d and q axis can be referred 1n a space vector if
they are, respectively placed as real and imaginary axis,
hence:

Vs - Vds +jvqs (5)
is = ids +jiqs (6)
L= 1Tl (7

Here, the well known transformation to the stator
equivalent single phase model is used where the magnetic
leakages are totalized n the rotor side and designed by
N.w, (Toliyat and Campbell, 2004, Ben Hamed and Shita,
2007). Figure 2 shows this model.

Where, R’, and N, represent, respectively the
equivalent rotor resistance and the total leakage
inductance located in the rotor side, I 15 the mutual
inductance. The magnetizing current can be expressed by

e}

the following equation:

P - ®)
Lo f 2nL,
Where,
V; = VS - RSiS
. —R
i = Moo R )]
L o

Fig. 2: Single phase equivalent circuit of induction motor

If we neglect the resistance voltage drop R,i, we
obtam:

I = V. :VS 1 (10)
f, 2nL

m s

Hence, the module of i, can be maintained constant
if the ratio V/f, remains constant. If we note I, the actif
current, then this current can represent the active power
and it generates the electromagnetic torque, its expression
is:

I — \}s _Rsis
TR (1)
-+ jL,o,
g

where the slip coefficient 1s:

We can obtain the Eq. 12 when neglecting the
voltage drop R,1;

2
2 _ s
I =

"2 (12)
[Rf] L)
2

By replacing g with its expression, the Eq. 12 can be
written as:

R (13)

The stator current can be written as:
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Where ,

Constant so the current
Anbe represented by 7 .

m

Tr

So, one can write that w, = f (I, w,) where f is a
nonlinear function. To estimate the rotor speed using
ANN, the function f should be identified. Therefore, the
current I, and the command , will be used as inputs to
the speed neural network estimator.
magnitude 1s obtained from the instantaneous values of
the current per phase i, i, and i, (Shita et al., 2007,
Zidam et al., 2002). The current expression used m this
case 18 given by the Eq. 14 as:

The current

. |
L= \/1; + 0+ (s

NEURAL NETWORK
CONTROLLER DESIGN

The NNC is a neural network which calculates the
input u (or the signal control), using the input-outputs
values. The standard model which can be represented by
the various nonlinear discrete systems 1s the NARMA
model (Nonlinear Autoregression-Moving Average)
which is used to approximate the input/output TM model:

y ()= N[y (), y (k-1)...., y (kemrt1),

u(k), uk-1),..., u (k-m+1)] (15)
where
uk)=w, k) : Is the input.
v(k)=w, (k) : Ts the output.

If the objective 13 that the output of the plant can
track the reference command that:

v (k) =y, (k), it is necessary to develop the nonlinear
controller as:

w, (k) =Glw, k), w, (k-1),..., 0, (kntl),

w, (k-1),...,0, (k-m+1}] (16)
where, G 1s an unknown linear or nonlinear function which
will be identified, w, and w ,are, respectively the output
and the input of the TM and n and m are, respectively the
order of &, and w, The purpose of this neural network 1s
to provide, at every sampling time, the variation of the
input Aw, = @, (k) — w, (k-1) uwsing the future variation
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output Aw, (k+1), so this neural network structure can
represent a predictive control with integration. The ANN
used for the NNC 13 a feed forward multilayer network
with one hidden layer activated by tanh Chyperbolic
tangent) function and output layer activated by linear
function. In order to have a good training, the data must
contain sufficient information about the system dynamics.
The network weights and biases updating are performed
only after the entire training set has been applied.

The feed forward neural network is usually trained by
a back-propagation training algorithm. The distributed
weights m the network contribute to the distributed
intelligence or “associative memory” property of the
network. With the networlk initially untrained, i.e., with the
weights selected at random, the output signal will totally
mismatch the desired output for a given mput pattern. The
actual output is compared with the desired output and the
weights are adjusted by the supervised back-propagation
traiming algorithm wntil the pattern matching occurs, 1.e.,
the errors become acceptably small. For this structure, the
input vector as shown in Fig. 3 is [dw, (k+1), dw, k), w, (k),
w, (k-1), dw, (k-2)] and the neural network output is the
command variation Aw,,, The training diagram of this
architecture 1s given on Fig. 4.

Training procedure: A learning procedure of a neural
network with M layers and n inputs using a back
propagation algorithm is defined. Tn this description, the
index 1 corresponds to a neuron 1n the output layer, the
index J to a lndden layer. During the learmng procedure,
we search to mimimize the couple (input, desired output)
by medifying the weights w,,;:

Tnitialize all the network weights to small random
numbers.
Propagate the input forward through the network:

x" () =f[E" (D] (17)
B ()= wi(bx] (1) (18)
1
Where,
Xy Output of the neuron i and the layer m,
Xy Output of the neuron j of the layer m (m: 1, ..., M),
W,y 0 Weights relating the neuron j of the layer (m-1) to

the neuron 1 of the layer m.

»  For each network output unit 1, calculate the error

term of the output layer:

s =1 B ][Ae, (1) - Al (] (19
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Fig. 3: The internal structure of NNC

Fig. 4: The block diagram of the NNC architecture

where, d; (t) the desired output of the neuron 1 of the
output layer.

*  For each hidden umt h, calculate the error term by

propagating the error:

X7 = £ ET ) [T w187 (1),

(20)
m=MM-1,..,2
¢ Update the network weights W,
(W;n)new = (W?)uld + AW;“ (21)

with
mo__ m m-1
Awr =n&] x;
1 is the learning rate of the back propagation algorithm
These steps are repeated so that to minimize the function
I:

1= Ty [Me,0-del,©f @

t 1
where, t 1s the pattern number.

Simulation results: We present in this study the
simulation results of the NNC. The tests carried out
confirm the robustness of this control scheme. The speed
responses are observed under different operating
conditions such as a change in the speed command and
a change in load torque “T,” (t =195, T, =5Nm, t= 455,
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Fig. 5: Simulation results of the scalar controlled ThM
speed responses with the NNC

T,=8Nm, t=55s, T,=5Nm). For the results presented
in Fig. 5, it is shown that the speed tracks the reference
values well.

In Fig. 5, we can show that the speed error which 1s
obtained as the difference between the desired input
signal . and the signal , that represents the actual
system output is null thanks to the presence of
integration. The application of the load torque creates a
disturbance on the output of the model. This disturbance
is rejected quickly but with an overshoot. The overshoot
amplitude depends on the gain K, the sampling step and
the value of the load torque applied.

NEURAL NETWORK SPEED
ESTIMATION DESIGN

The aim of using ANN to model a nonlinear system
is to build a mathematical model which can be used in
nonlinear predictor design By giving some prior
knowledge about the system and information on inputs
and outputs, the ANN can accurately describe the
nonlinear behavior of the machine without requiring
the knowledge of machine parameters (Zilkova et af.,
2006).
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Fig. 6: The mternal structure of the NNSE

Neural networks have the ability to learn, so it has
become an attractive tool for variables identification
(Shao and L1, 2000, Hiyama ef al., 2000). In this study, an
alternative estimation of w, 1s attempted with an ANN. The
four-layered neural network based on back-propagation
technique is used to estimate the rotor speed.

The first stage 1s to take the various value
measurements for the training procedure. The motor 1s
triggered by an instruction which covers all the operation
conditions to obtain the (I, @, w ) training vectors. For
each measures vector, the error between the two outputs
(real and desired speed) 1s calculated. It is used to correct
the weights and the biases of the wvarious layers.
Measurements are bounded before using them in the
learning procedure because the used activation functions
are limited.

In the training stage, input values (I, w,) are applied
to the neural network and there is a known output which
15 the rotor speed (which corresponds to the used input
values). If the mputs are time-varying signals, then their
sampled values at the first sampling instant are applied to
the NNSE and the weights and biases are randomly
mitialized (Fig. 6). The output signal of the NNSE is then
computed by using the back-propagation techmque (the
input signals are propagated through the network to
obtain the output signal). This output is then compared to
the known output and the error 1s determined. If the error
15 zero, then obviously the correct weights and biases
have been chosen. If not, the error is back-propagated
from the output layer and the weights and biases are
meodified in such a way that the sum of the squares of the
errors (global error) 1s minimized.

IM SPEED SENSORLESS AND
CONTROL SCHEMES

Figure 7 depicts the bloc diagram of the proposed
closed-loop control scheme with a newal network
controller (NNC) and a neural network estimator (NNSE).
The NNC was used to produce a control force so that the
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Fig. 7. Block diagram of the speed sensorless IM control
scheme

motor speed could accurately track the target one. A
widely used back-propagation algorithm was adapted as
the leaming algorithm, in order to adjust the parameters of
the NNC and NNSE. The system consists of a speed
controller, an ANN speed estimator and a scalar
controlled IM.

Simulation results: In this study, the simulation results
are presented to evaluate the effectiveness of the
proposed speed sensorless TM control scheme. The
package language MATLAB/Simulink was used for the
simulations. The number of hidden layer nodes in the
NNC and NNSE were set to 5. This nodes number was
sufficed to control the IM. Figure 8 presents the speed
responses of the proposed control scheme. Figure 8a
presents the real and the command speed with the speed
error of the proposed control scheme. Figure 8b reveals
the estimated speed responses of the drive system using
neural network estimator with a variable reference speed.
It 15 evident from Fig 8 that the proposed controller can
follow the command speed without any overshoot neither
a steady-state error. Thus, the NNC 1s not affected by the
sudden change of the speed command and a good
tracking has been achieved for this control scheme.
For these simulation results a load torque is applied
(att=40s, T,= 5Nm and at t = 50s, T, = 2 Nm) and omitted
att = 140s. The IM and the DC generator parameters are,
respectively presented in Table 1 and 2.

Experimental results: The scalar control IM drives of the
proposed scheme in Fig. 7 is implemented using DSPACE
1104 as shown in Fig. 9 which 1s a control board with a
digital signal processors, thereby to check the validity of
the previous computer simulations and to show the merits
of the proposed control scheme. The sampling time 1s 0.1
ms. The DC link and PWM inverter were wnplemented
using a power diodes rectifier and a power inverter based
on IGBT transistors, respectively. The current signals at
the input of the NNSE were filtered and adapted before
being applied to the speed estimator.
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Table 1: The induction motor pararmeters

Sizes (ferms) Walues Units

Fated power 1 kK'Watts

Rated voltage (A 230/4000 Valts

Rated frequency 50 Hz

Rated speed 1410 jy s

Rated current (ASY) 4. 0472654 ohrns

Eated power factor 0.83

Table 2. DC generator paratneters

Bizes (terms) Walues Units

Rated power 1 k\Watts

Fated armature woltage 220 Waoltz

Fated armature corrent 6.2 Arnper

Rated field woltage 200 Wolts

Fated field cumrent 0.24 Amper

Rated speed 2100 Tt

Figure 10 and 11 show the experimental results of the
estimated speed using the NNSE in an open loop. The
Fig. 11 illustrated the results taken for a variable load

torque.

Figure 10 shows

the

variable-speed

control

sperformance at 1300 rpm reference speed with no load
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Fig. 10: Experimental speed responses for a change speed

command: (a) The actual and the estimated speed,
(b) The estimation error of the NNSE
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Fig. 11: Experimental speed sensorless control with

applied.

variable load application

The result shows that it has stable and good

variable-speed control performances. Figure 11 shows the

speed-sensorless control performance where the load was



Int. J. Signal Syst. Control Eng. Appl., 1 (2): 150-158, 2008

250

200 250

150
Time (gec)

50

Fig. 12: Experimental speed responses of the proposed
control scheme: (a) Actual and estimated speed,
(b) Speed error

applied and omitted. The estimated speed coincides
exactly with the real speed even at the load torque
application mstant. From these results, it 13 shown that
the proposed speed-sensorless control algorithm has
good performances from low speed to entire speed range.
The Fig. 12 shows the experimental results of
NNC with estimate speed by neural network NNSE.

CONCLUSION

In this study, a sensorless IM neural network speed
control is realized which is composed of two control
architectures: a neural network control and the neural
network speed estimator structure. The study
successfully demonstrates the application of neural
network in the estimation of feedback signals for a scalar-
controlled IM drive system. The speed estimation 1s used
to increase the speed-sensorless drive performance so a
four-layer feed forward neural network of the structure 1s
used to estimate the TM speed and the performance of the
estimator was found to be excellent in the wide torque and
speed regions. From the simulation and experimental
results, 1t 18 shown that the proposed speed centrol
scheme has a good performance over the entire speed
range from low to full speed. Also, it has a robust speed
estimation performance even at load variation or variable-
speed operation.
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