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Abstract: A generalized approach to the modelling of transient heat flow in rolled steel during air-cooling n
billet mulls is presented. The mathematical development starting with the relevant differential equations and their
modelling using the Hills” integral profile method give polynomial functions which characterize the transient
heat flow n the workpiece and establishes an optimal control law for static cooling conditions. An experimental
validation test enabled the final model to be obtained as a function of the rolling speed and shows that a good
functional correspondence exists between the model and the data reported m the literature.
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INTRODUCTION

Several models of heat flow in hot rolling processes
have been reported m the existing literature. Most of
these studies have been confined to laboratory models
and relatively simple components, notably finite lengths
of steel slabs, have been used to produce solutions to
the heat conduction equations. These equations were
often defined in one (Wartnann and Mertes, 1973) and
more rarely two (Yu and Sang, 2007) dimensions in space.

In billet mills, accurate mathematical models of
mterstand cooling of rolled steel are required for the
analysis and control of the shape distortions observed
during air-cooling of the final product. In relation to the
thermal distortions observed during hot rolling of steel in
billet mills (Obimabo, 1991 ), these one-dimensional models
cannot be used with confidence to describe the origins
and orientations of these defects. Increasingly, the
models reported in the existing literature are aimed at
predicting the thermal conditions of the rolls m both hot
and cold strip mills while a very scant treatment 1s, so far,
given to the determination of the actual temperature
distributions in the workpiece itself.

On the computational methods, various numerical
methods have been developed for the computation of the
heat flow problems. Finite difference techniques were
mainly used in which direct approximations were made to
the governing equations in terms of a finite number of the
unknown temperature values chosen at strategic mesh
points. These mesh points are a pattern of discrete points
used to replace a contimuous domain on the test sample,
each point being taken to represent a region within the
domain. Therefore, instead of obtaimng a contmuous
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solution throughout the domain for the temperature
values, only an approximation of these values at these
isolated points is obtained.

This study presents a model of interstand cooling of
rolled steel for 2 transverse surfaces of the workpiece in
a billet mill. The decision to model the two-dimensional
problem was conceived from the results of experimental
tests on the samples (Obmabo, 1991), which confirmed the
deswrability of this approach by extubiting asymmetry of
the temperature distributions in the edge dimensions of
the test samples.

The overall objective of the study, therefore, was to
develop modellmg and control techniques that are of
potential interest to steel industry. Because the
deformation process n a billet mill 13 a complex operation,
this analysis 1s seen as an important research tool,
complimentary to and capable of extending knowledge
obtained from laboratory and on-line plant observations
and measurements (Obinabo and Chijioke, 1991).

MATHEMATICAL FORMULATION

The problem considered is one of time-and space
dependent heat flow m flat bar products rolled in Delta
Steel mill at Ovwian-Aladja, Warri, Nigeria. The
geometrical model of the bar sample used in the analysis
(Fig. 1) is of the dimensions 110x70x6 mm and produced
from RST 37-2 steel grade. The approach in the
development of the model i1s based on the assumption
that the RST 37-2 steel is homogeneous in terms of its
metallurgical constitutions. This enables the thermal
conductivity and the specific heat capacity of the material
to be assumed constant across any dimension of the
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Fig. 1: Geometrical model of the RST 37-2 steel bar sample

worlpiece. Another important aspect of the model is the
provision for temperature ndependence of these
functions. A series of empirical equations has been
adopted m the literature (Yang and Lu, 1986) for the
different phases in steel over the whole temperature
range. It 13 indicated that above the temperature of 900°C,
the thermal conductivity is temperature-dependent.

Rolling temperature models exist for plate and hot
strip mills (Pedersen, 1999; Bryant and Heselton, 1982)
and for billet mills (Obinabo, 1991) and are defined by a
set of differential equations 1 terms of transfer function
components 1n the frequency domain and analyzed using
transform methods of solution. The problem considered
n this mvestigation 1s one of time- and space-dependent
heat flow in rectangular cross-sectional bars rolled from
RST 37-2 steel. The model assumes the RST 37-2 steel to
be homogeneous in its metallurgical constitution so that
the thermal conductivity and the specific heat capacity of
the material were assumed constant across the entire
dimensions.

Two simultaneous ordinary differential equations
were derived for these parameters which satisfied the
following unsteady heat conduction equation,
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Where,

a=S Q=9
pc pc

V.., V,,V

x2 Yyr Yz

are component of the velocity vector v . 90/01 denotes
the rate of change of temperature in space and time along
the workpiece. The length of the deforming bar was
considered infinite since the rolling process in the mill was
continuous. Consequently, conduction of heat in that
dimension relative to the other dimensions was negligibly
small, so that the temperature changes in that direction 1s
a function of time only.

Applicability of Eq. (1) was based on the assumption
that the rolling process in the mill was steady relative to
the roll stand and that the motion of the workpiece was
restricted to the direction of rolling only. The heat mnput,
Q, due to the deformation in the roll gap was assumed
uniformly distributed in the workpiece. Thus
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At any pomt z along the length of the workpiece from
a chosen position, the time during which the workpiece
was exposed to the cooling effects of the mill was defined
(Obinabo, 1991) as from a chosen position, this time was
defined as:

(3)

z
T=—
v

The origin of z was at the instance the workpiece
exits the roll gap and this 1s at time T = 0. Equation (3)
applies to the workpiece at any point between two roll
stands, that is, at exit from the roll gap of one stand to the
point just before entry into the roll gap of the next stand.
It also applies to the portion of the mill between the last
finishing stand and the cooling bed. In each of these
regions the speed of the workpiece is assumed constant.
Therefore, to transform the foregoing results Eq. (1) in
terms of this variable T, the following operator was
derived from Eq. (3) as:

8 ddr 19

v_9gs_ 1Y (4)
dz o1dz Vo

and on substitution mto (1), yields (Yu and Sang, 2007,

Kwon and Bang, 2000):
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In the weighted form (Yu and Sang, 2007), Eq. (5)
becomes

do=0 (6

200 o0
k) Oy ay

and reduced using Green’s theorem (Pepper and Heinrich,
1992) as follows:
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where, ¢ = k(0)/ pc(0) and {2 denotes the two-dimensional
domain. Yz and d\f represent respectively the boundary
and the surface element of iy over which the normal
gradients were applied. Also, n 13 the outward normal unit
vector at the boundary . To facilitate computation of (5)
the dimensionless variables due to Hills (Obinabo, 1991)
were employed to transform the equation to the following

form
A A +[ 1 ]2 o o ®
ax” eyt \WVT) o &

which, on introduction of the integral sign, gave
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and which, on further simplification and ignoring the
asterisk, gave
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The left hand side of Eq. (10) was evaluated first by
integrating with respect to y*, then with respect to x* to
yield the following:

* *
LHS=t_. % 3i
e TOxH
= (11)
a0 * 0 *
R
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where suffix o represents the origin of the coordinate axes,
x* and y* are dimensionless spatial extents in the x and y
directions respectively. Writing Eq. (11) in terms of the
surface heat flux, q gives

q;; = h*ABZY (12)
then Eq. (12) becomes:

he(6;, 6 |- at —q,t (13)

The first term on the right hand side of Eg. 10 was
evaluated (Obinabo, 1991) to yield the following result:

ff[?g]dx*dy*:i(ffe*dx*dy*)

o] [
b e b e
Similarly, evaluating the second term on the same
right hand side of the equation yields:
B 1
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Combining these results and ignoring the asterisks,
the following was obtamned:
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Auxiliary function for 8 (x, y): The result shown in
Eq. (16) could not as yet be solved because the
temperature distributions appearing in the integrals were
not known. Some fimctions were required to represent
these temperature distributions in the workpiece during
cooling. Consequently it was imperative to design an
accurate temperature profile q which, in itself, satisfies the
boundary conditions that prevail mn the cooling of the
bars during rolling and was a function of x, y and £ In
steady state heat
conduction problem, the integral approaches proposed by
Yang and Lu (1986) report auxiliary functions with at
least one unspecified parameter. Ritz method assumes a

considering the 2-dimensional

quadratic function in the dimension that runs across the
width of the workpiece and an exponential function in the
dimension that runs along the length of the workpiece.
The result of the 2-dimensional profile was defined
mathematically as:

e(x,y):A(Ez—yz) e ¥* (17)

where, A and B were determined from the boundary
conditions and ¢ represents the width of the workpiece of
mfinite length. Kantorovich’s method was almost similar
to Ritz’s. The difference was that the form of the profile
assumed in the dimension that runs along the length of
the flat bar was an unknown function. This reduced the
Ritz function to the form.

6(x, ) = (£ =y )X(x) (18)

where X(x) was required to be determined from the

boundary conditions.

2
e—ao—i—a][x]—i-az[x] (19)
t t
In current investigation, a 2-D awuxiliary function
based on the spatial cooling profiles reported by Obinabo
(1991) was proposed for the surface and width dimensions
of the workpiece as follows

8(x,y)=(a, +a,x" +a,x")(b, +by+b,y*) (20

The spatial distribution was symmetrical in the
surface dimension and asymmetrical in the width
dimension. During air cooling the workpiece rested
surface-wise on the cooling bed. In this condition, the top
surface was exposed to the free air stream surrounding 1t
while the bottom surface exchanged heat by conduction

with the cooling bed. This condition gave rise to Eq. (20).
The a’s and b’s were determined from the boundary
conditions. Expanding Eq. (20) and ignoring terms
containing powers of x’s and y’s higher than 2, the
following was obtained.

B(x.y)=a.b, +a,by +ab,y’ +abx’ D

The justification for truncating Eq. (21) 1s embodied
in the reasoning that the variables x and v became non-
dimensionalised by defining the following:

o=t (22)
X

g o (23)
y

where t, and t; are instantaneous spatial extents along the
directions of x and y, respectively. It then follows that the
maximum value either t, or t, can take in Eq. (23) and (24)
is x ar y. Consequently, in analyzing the heat distributions
within the workpiece, the values of x and y in the auxiliary
function will always be fractional and lugher powers of
fractions reduced them to negligibly small quantities and
the terms containing them tend to zero. For all values of x
and y, the expansion to power 2 obtained in Eq. (22)
seemed quite reasonable and therefore, represents the
approximate auxiliary function required to compute the
temperature distributions in the workpiece.

The final form of the model: Apart from the roll gap where
heat was generated within the workpiece due to
deformation, no heat sources were known to exist in the
mill train. Consequently, a zero heat flow condition across
the centre line of the workpiece was assumed so that the
following result was obtamned from (16).

bty
h(ﬂtﬁ@ty)d% [ f Ocxdy |0, [C;Lg]—ety [iig]

2 2 [t by 2 2
d’t d’t

_[%] d—z ff@dxdy -0, [—;]—ety[ Zy]
S dg, dg

(24)

Difficulties associated with measurement of the
surface temperature of the workpiece during the rolling
process made direct measurement of the heat transfer
coefficients at these locations almost impossible. Indirect
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method of measurement which involves use of radiation
pyrometers has been adopted generally (Kim and Huh,
2000, Polukhin, 1975). The disadvantage of this techmque
of temperature measurement was that the other modes of
cooling were not monitored. Consequently, the accuracy
of the results so obtained depends largely on the
effectiveness of the radiation mechanism and the surface
heat flux of the material becomes a direct function of the
radiation mechanism. Harding (1976) argued that this is
misleading since convection was a more mnportant heat
transfer mechamsm than was generally thought. Poluklin
(1975), Hills (1963) and Obinabo (1991 ) also considered a
combined effect of convection and radiation mechanisms
and related it to the surface heat flux of the workpiece.
Meanwhule, in their classical experiments on heat flow in
continuous casting of steel ingots, Savage and Pritchard
(Hills, 1963) obtained a relationship that expresses the
surface flux as a function of time. This was done by
measuring the rise in the temperature of the cooling water.
The data so generated was used to estimate the total
quantity of heat removed from the surface of the cocling
steel mgot. The expression obtained from the heat flux
was of the form

(25)

quo = [qO:o o b'\/;

for which the values of 2628 and 221.9 were obtained for
qp and b respectively; b i1s constant of linear relationship
between the heat flux and dwell time. In terms of the
dimensionless variables used in the development of this
work, this expression reduces to

Qe =1— B\E (26)
Where:
2219
B= m (=0.08)

and 1s a constant of lmear relationship obtamned by
transforming Eq. (25) to its dimensionless form. This result
was reduced in Obinabo (1991) to the following:

dq . B

—=f =—= (27)
N 3
From Eq. (27) the following result was obtammed:
Fq_o_ B
Z A —f = (28)
O

143

Hills (1963) shows that the heat transfer coefficient at
the surface of the workpiece bears a linear relationship
with time and gives the surface heat flux as:

q,=—h, (1-~£)8, (29

where the subscript o represents the values on the
surface of the workpiece and vy represents a constant of
linear relationship. Tn terms of the dimensionless variables
this result becomes:

q' =(1—n£)8 (30)
which yields:

da _ f. =—f (31

&3

The following result was deduced from Eq. (31)

(32)

For the modes of cooling the workpiece considered
in this work, the surface heat flux was given by an
equation of the form (Eckert et al., 1993)

q=—(oF (8"~} ) +h(6—9,)] (33)
Where,
6, Ambient temperature
0 Measurement surface temperature
o = Stefan-Boltzman constant = 56.7x107"
kWm k™.
F = Shape factor accounting for the geometry of

The surface of the workpiece radiating heat.

In terms of the dimensionless variables Eq. (33)
becomes:

*

8 ¢ +h(0-¢)

= (34)
1—¢* +h'(1—¢)

where, h* = h/¢F6°, ¢ = dimensionless absolute ambient
temperature.

On the surface heat transfer coefficient of steel
products cooling in air, a number of results has been
deduced by in the existing literature. On the nun-out table
of a strip mill, Labiesh (1982) reported a wide range of total
heat transfer coefficient in the range 60-120 Wm ™ k™' for
a strip piece being transported from the roll stand to the
cooling bed. Several other publications have been made
on the predication of this value and some of them have
been discussed extensively in Obinabo (1991).
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A complete analysis of Eq. (24) was possible only
when an auxiliary function was defined and the surface
heat flux adequately accounted for. When the three forms
of the surface heat flux variation were considered, the
following results were obtained.

From Eq. (26)

0(x,y) =0, +(5y/2) (8, —6,,)

(35)
Hy /2)(1 By + (/220 B0

From Eq. (30), the auxiliary function becomes:

0(x,y) =0, +(5y/2) (8, —0,)

(36)
Hy /20— O+ (x/ 20—

From Eq. (34), the auxiliary function becomes:

e(X=Y) - eo + (5}//2)(917 - 918)
+{y/ DO+ (x/230

(37)

Now taking the integrals:
Loty byt
u[[edxdy:u[[[edxd

From Eq. (35) the following was obtained

te
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—tt9+ t.t
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Similarly from Eq. (36) and (37) respectively the
following were obtained:

ff@dxdy =t,t.0, +%txt§ (6, 0,50+
o 0

(39)

1 1
tht; (1—n£)0, Tk (1—~£)0,
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=t.t 0 +5tt
4

¥y o

t ty
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1 1

+tht§ety +Zt§tyetx

(40)

From these results, therefore, (16) 1s written for each
of the cases considered above in the x-and y- dimensions
as follows: From Eq. (38), the following were obtamed:

*  Inthe x-diumnension:

d
dg

[

de”
In the y-dimension:

h, =

[txtyeo + it

(15\/5)]% i
Aokl -o 5

X

[txtyeo + it

5
ho, :—g(txtyﬂo +Zt t2 20, —0,)
+ tt, (1—BfE ) — ey
(1-pED o, -
*()(g(txt9+tt(9 i)
+ tt(1-
From Eq. (39), the following were obtained:
»  Inthex-dimension:
S0, (=0, -0, T
! €
d’t
—(—=r(— 0, 1—~E)0, )—0 =
(V)(dg (t,t,9, +— tt( €0, ) =9, dgz)
»  Inthe y-dimension:
hd —i(ttBtht(B )
t _dg 17 18
1 dt
+—tt2(1 wﬁ)e )=, —>
4 dﬁ (44)
— — a9, 0
(V)(dg (t.t,9, +— tt(w 615)
+— tty(l E
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From Eq. (40), the following were obtained: From Eq. (45 and (46), the following were obtained:
¢ Inthe x-dimension: ( NELA dZB % l ( diz @)
v’ e dg 47 g b ez e
ho, (txt 0, + t,(q, )—
a ’ - da K —g Gty
. (45) s (th) L) diz
— 0,
( & Xy o (qt )) ( i )) (51)
*  Inthe y-dimension: d®e, deo 1 d?
( ¥ =t —(t) ( z)y —(a, )
dt, vooge? dE 4 7dg 4V dg
d
L =—(t,t 60+ t,tq, )—0, dt d’t
d el * — 6 (¥ y—p (%
3 Zzt ) L @,)=0, (0,0
1
_(V) (E(txtyeo +4t tyqt ty d& (52)
From Eq. (41) and (42), the following were obtained: The problem was finally represented globally using
’ matrix notation as follows:
_de 1 2
o _ _ ¢ - 1— 2 1
v dg de (txt A=5L5 (- 0 29 D
¥ v zx Yo 1 0 X Yo F (53)
1, - 1Y’ 1 01 A
+3PLe 2(1+2[] ¢y @ 0 (=D, D, 8,
v v
b, at . 6 d%,
it de it ( de’ ) where, the D's represent derivatives with respect to time.
and s s I' and A were deduced directly from the preceding
29 de equations as:
(—) = *—( *BCZ)
Voodet dE t.t, 1 1 1 1
Lo = —(——(=BE2)+BL,E 2(+2(E)
+fBE_.2(1+*(*) €y U8 wty (54)
et FEN _ etx ; dztX )
y 2
- (dg)—t (dgy) t,t, dg .t df
Similarly from Eq. (43) and (44), the following were R % 1 —% 1 1.5
o Aot ) BT ()
: (55)
2 t
AR W Ny - Y(g)ftgcﬁ)
Vooder de ot t, 4 (49)
d’t,
—((1— r‘{E_.)etx ) etx (Ti) - etx (diﬁz) We now let the state variable x, = 0,(t) in Eq. (39) and
and (40) so that
d
1., d%, de 1 1 — x, =
VLT R
(50)
d
(=88, ) 6, ( y) b, ( y)) — V? r
TS a et
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or, using the matrix notation, the above result becomes

d |x _ 0 11|x n 0
ds |x,| |0 VP x| |@
Where, ® (= T'-V*x,) and
. ¥ 2°) tx dqn tx dzqn qn dztx]
- 1 ae A oae? s . e ez
4 dEg  4v® df t.t, d€
in the x-dimension
2
tda, t, digy
4 df 4V7® dE?
r=v* 8 ) 8 )
q dt, d°t,
T, T Va e Uy .2
t.t, d§ dg
in the y-dimension
d|x 0 1]x 0
. — ) + u
dg |x, 0 Vx| |®

or generally

S{xh = A 0

OPTIMAL CONTROL OF THE STATE MODEL

In general, stability is a very important characteristic
of the transient performance of dynamic systems. Almost
every functional system 1s designed to be stable and
within the boundaries of parameter variations the system
performance can be improved. The system represented by
(52) can be investigated for asymptotic stability by
studying the eigenvalues of the system when A (u, (p, 1))
1s constant (Mayne, 1973; Obinabo, 2008), or by studying
the solution system ¢ (u) of Eq. (52) with the initial
condition ¢ (u) = T where T is the unit diagonal matrix if A
(uy (p, 1)) happens to be an arbitrary function of p. Here,
an optimal feedback control law u (L) was obtained for the
linear inhomogeneous system based on the quadratic
performance index and was expressed as a function of x
given by u (u) = £ (x), which assures asymptotic stability
(x (n) = 0) as p — o. The system was represented by

d
a{x} = A(x 4B, x(x) =x,
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Minimizing the quadratic performance index

=

oL_ﬁg

<" (1)Q(u)x () +u™ ()R (n)u () de

where, Q (1) and R (p) are positive and semi-definite and
positive respectively, leads to an optimal control which us
a linear function of the state and 1s given by:

uf)=—R7()B ()8 (h)x ()

where, S (W) 18 the solution of the matrix Riceati equation
given by

S=-—S(u)A(p) - AT (W)S () +8(w)B

()
R ()S()= Q). S —00) =0

Q () and R () May be chosen as unit diagonal
matrices for convenience. Such a choice also implies that
all the control and state variables are equally weighted in
the cost function.

Now from (50) we denive equations for static cooling
of the work piece on the cooling bed of the mull
(where V = 0 and assumed unit) as follows:

01
00

The performance criteria is rewritten as

0
1

4
dg

X %

u

Xy Xy

](u) :) x(l)—i—]‘ 0 x(t)+>\u2 (t)}dt
U= @O ¢ I s (1) ,
1) o ) +[ o s (™™ (1)}t

which, on comparison with the general form

T

(T)+ [{8" (t)x (1) +euce. that
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Therefore,
1
T=N1 0, a=
o By
giving f7[1  0]and g = A’
From (57)
0 1 0
= \ and B = [1 ]

Now the costate variable 1s
d T
L 1P )= AT WP M-pW). p(T)=a (6D

Now substitute for AT (t) and B (t) so that the
following may be obtained

d |0 Olp, (1) |1
E{p(t)}*_l 0llp, 1) |0
[0 o]

S -1 ol () o

From which

d
hal - (62)
L p@®}=-1
And
d
ul — (63)
1P }=—p,®
From Eq. (62)
p, (t)=—t+C (64)

0
p(T) =c., pl) = H,p1 (H=1=

p; ()=landp, )=1=p, (t)=0

Now substitute these for p, (t) n Eq. (64) to yield
1 +t=C, thatis, |+1=C:.C =2 giving p, (t) = 2-t
From Eq. (63)

L n )= ==

t? 3
=t—2 ' p, ()=——2t+=
p, (t) 5 5

Now we define the Hamiltonian
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Hx,p.u,t)=0" (Ox+g(u.t) +p' (Ax +Bu)

%

1 0] u” +p’ (Ax+Bu)

2

=x, +xu’ +p’ (Ax+DBu) (65)

0

=x, +xu’+p’ :

u

1
X+
0

—X +hu’ +Pp:X; TP U

u is unconstrained hence we find JH/Ou = 0
From Eq. (65) 0H/5u = 2Au + p, Equating to zero gives:

o-slie

Hence the control law for the static cooling of the
rolled steel on the cooling bed of the mill is:

2
2xu=—p, [%2t+%

1

2N

i 2t+ >
U———|— z
X2 2
which 1s optimal
RESULTS AND DISCUSSION

The results of the analysis of the model are
presented for the conditions when (i) V = 0 and (ii) V has
some finite values. In the first case, Fig. 2 and 3 represent
typical temperature profiles obtamed for the two planes of
the sample considered. The average cooling rates of the
various peints on the sample were found to lie between
1.034 and 1.041°C per second over the 900-550°C
temperature range. The expectation that portions of the
samples nearest to the edge surface cool faster than those
close to the middle, is supported by experimental data
(Obinabo and Chijioke, 1991). The plots of the temperature
distributions obtained for the X-Z plane of the sample
show no sigmficant difference in the cooling of the points
on this plane. This confirms the homogeneity of the
material and characteristics of the sample. Tt was also
noted that there was little or no asymmetry in the spatial
distribution of the heat flow across the sample as was
expected because the bounding surfaces of this plane was
equally free of constraints. Tn addition, the thickness of
the oxide scales formed on the surfaces was approximately
the same for the points monitored-a further confirmation
of thermal symmetry. The importance of symmetry of
temperature distribution is that it simplifies considerably
the derivation of the modeling equations, allows
computation carried out on a quarter section of the sample
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Fig. 2: Average cooling gradient for discrete points on
the Y-7 plane
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Fig. 3: Temperature distribution across X-Z plane on row
3 at the times 10, 30 and 60 sec

to represent the whole and confirm absence of
unevermess in the temperature profile which could
otherwise give rise to defects like buckling.
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The plots obtained for the time-dependent profiles of
the heat flow in the Y-Z plane of the sample do not
portray basic departure from the general features
observed m the case of the X-Z plane. However, by virtue
of the manner in which the samples were positioned
(surface-wise) on the cooling platform, the rate of cooling
of the X-7 swface in contact with the platform was
expected to be different from that of the opposite surface.
Asymmetry in temperature was thus introduced between
the top and bottom boundaries of the Y-Z faces, giving
rise to asymmetrical Y-7 distributions, unlike the X-Z
distributions.

The temperature profiles indicate that the cooling
rates on the Y-Z plane were slightly higher than those
recorded for the -7 plane. An average value of 1.04°C
per second was obtained for the Y-Z plane. The resulting
spatial distributions of the heat flux on the sample were
determined directly from these temperature data at the
instantaneous times of 10, 30 and 60 sec after cooling had
commenced, using techmques reported earlier by Obinabo
(1991 ) and which were based on a rigorous mathematical
formulation and digital computer solutions.

CONCLUSION

This study has established an optimal control law for
static cooling conditions and an experimental validation
test which enabled a two-dimensional heat flow model to
be obtained as a function of the rolling speed for
rectangular cross-sectional bars rolled from plain carbon
steel. The model, which was based on the Hills’
generalized integral profile method 15 of the form

d*e de

S =1(q, £, ,-V)
and applies to both mterstand cooling and cooling of the
final products on the cooling bed of the mill. The terms
ds, > g, , and V characterize the swface heat flux, rate of
chénge of the dimensions of the workpiece during cooling
and the rolling speed respectively. The validity of the
model was confirmed in Obinabo (1991) by comparing the
profiles of the heat flow determined by experiment for
static models with the theoretical results. The study
shows that a good functional correspondence exists
between the model and the data reported in the literature.

Notation:

C Specific heat capacity (J/kg°C).

h Heat transfer coefficient (W/m2°C).
k Thermal Conductivity (W/m°C),
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Heat flux (W/m?).
Dimension of workpiece (m).
Speed of workpiece (im/s).
Spatial extent in space (m).
Thermal diffusivity (m®/s).
Strain.

Temperature (°C).

Density (kg/m”).

Time (8).

Dimensionless time.

fial

=
N

a7 D @™ R KF T

Small increment.
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