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Abstract: Every node in network needs to know the identity and location of its neighbors to support
processing and collaboration. This can be easily obtamed mn a planned network and quite hard in ad hoe
networks whose topology 1s constructed and updated in real time. Self-location using GPS may not be feasible
but an effective distributed positioning algorithm is to be used The proposed technique is a distributed
infrastructure free positioning algorithm which achieves robustness through iterative propagation of
mformation through a network. The 2 primary obstacles to positioning in an ad-hoc network like sparse anchor
node problem and the range error problem are considered. In order to meet the above problems the new
distributed algorithm is generated. This algorithm consists of two phases: start-up and refinement. For the
start-up phase the Hop-TERRAIN algorithm is used to overcome the sparse anchor node problem and
refinement algorithm 1s used to refine the position estimates generated by Hop-TERRAIN.
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INTRODUCTION

Sensor networks consist of a large number of sensor
nodes densely deployed over physical space. Many
applications require knowing the positions of the nodes,
sometimes relative positions among them. In this study,
a new distributed technique for discovering relative
locations of nodes based on local distance information 1s
proposed. The proposed techmique is a healthy
algorithms that are capable of handling the wide set of
possible scenarios left open by so many degrees of
freedom. Specifically, assume that all the nodes being
considered in an instance of the positioning problem are
within the same connected network and that there will
exist within this network a mimmum of four anchor nodes.
In this a connected network is a network in which there is
a path between every pair of nodes and an anchor node
15 a node that 1s given a prioni knowledge of its position
with respect to some global coordinate system.

The positioning algorithm (Savarese et al, 2002)
being considered relies on measurements, with limited
accuracy, of the distances between pairs of neighboring
nodes is called range measurements. Several techniques
can be used to generate these range measurements,

including time of arrival, angle of arrival, phase
measurements and received signal strength.  This
algorithm 1s indifferent to which method 1s used, except
that different methods offer different tradeoffs between
accuracy, complexity, cost and power requirements. Some
of these methods generate range measurements with
errors as large as +£50% of the measurement. These
ertors  can come from multiple sources, mcluding
multipath interference (Savvides et al., 2002), line-of-sight
obstruction and charnel in homogeneity (Nasipuri and Li,
2002) with regard to direction. This research, however, 1s
not concerned with the problem of determining accurate
range measwrements. Instead, assume large errors in range
measurements that should represent an agglomeration of
multiple sources of error. Being able to cope with range
measurements errors is the first of 2 major challenges in
positioning within an ad-hoc space and will be termed the
range error problem throughout this study.

The second major problem in ad-hoc positioning
algorithms is sparse anchor node problem (Nasipuri and
Li, 2002), comes from the need for at least 4 reference
points with known location in a three-dimensional space
(Shang et af, 2003) in order to uniquely determine the
location of an unknown object. Too few reference points
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results in ambiguities that lead to underdetermined
systems of equations. Recalling the assumptions made
above, only the anchor nodes will have positioming
mformation at the start of these algorithms and assume
that these anchor nodes will be located randomly
throughout an arbitrarily large network. Given limited
radio ranges, it is therefore, highly unlikely that any
randomly selected node m the network will be mn direct
communication with a sufficient mumber of reference
points to derive its own position estimate (Doherty et al.,
2001).

In this study, the distributed algorithm is split
into 2 phases: the start-up phase and the refinement
phase. The start-up phase addresses the sparse anchor
node problem by cooperatively spreading awareness of
the anchor nodes’ positions tlroughout the network,
allowing all nodes to arrive at initial position estimates.
These initial estimates are not expected to be very
accurate, but are useful as rough approximations. The
refmement phase of the algorithm then uses the results
of the start-up algorithm to improve upon these initial
position estimates. The ranger error problem is also
addressed i this study.

TWO-PHASE POSITIONING ALGORITHM

The 2 important problems to positioning in an ad-hoc
network are the sparse anchor node problem and the
range error problem (Capkun et al., 2001). In order to
address each of these problems sufficiently, the proposed
algorithm 1s separated into two phases: start-up and
refinement. For the start-up phase the Hop-TERRAIN
algorithm (Ko and Vaidya, 2000) is used. The Hop-
TERRAIN algorithm 1s run once at the beginming of the
positioning algorithm to overcome the sparse anchor
node problem and the Refinement algorithm i1s run
iteratively afterwards to improve upon and refine the
position generated by Hop-TERRAIN.
Refinement 13 concemed only with nodes that exist within
a one-hop neighborhood and it focuses on increasing the
accuracy of the position estimates as much as possible.

estimates

Hop-TERRAIN: In sensor networks most of the nodes
have no positioning data, with the exception of the
anchors. The networks being considered for this
algorithm will be scalable to very large numbers of nodes
spread over large areas, relative to the short radio ranges
that each of the nodes 1s expected to possess.
Furthermore, it is expected that the percentage of nodes
that are anchor nodes will be small. This results in a
situation in which only a very small percentage of the
nodes in the network are able to establish direct contact
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with any of the anchors and probably none of the nodes
in the network will be able to directly contact enough
anchors to derive a position estimate.

In order to overcome this 1mtial mformation
deficiency, the Hop-TERRAIN algorithm finds the number
of hops from a node to each of the anchors nodes in a
network and then multiplies this hop count by an average
hop distance to estimate the range between the node and
each anchor. These computed ranges are then used
together with the anchor nodes’ known positions to
perform a triangulation and get the node’s estunated
position. The triangulation consists of solving a system
of linearized equations (Ax = b) by means of a least
squares algorithm (Niculescu and Nath, 2003).

Each of the anchor nodes launches the Hop-
TERRAIN algorithm by mitiating a broadcast contaimng
its known location and a hop count of 0. All of the
one-hop neighbors swrounding an anchor hear this
broadcast, record the anchor’s position and a hop count
of 1 and then perform another broadcast containing the
anchor’s position and a hop count of 1. Every node that
hears this broadcast and did not hear the previous
broadcasts will record the anchor’s position and a hop
count of 2 and then rebroadcast. This process continues
until each anchor’s position and an associated hop count
value have been spread to every node in the network. Tt
18 important that nodes receiving these broadcasts search
for the smallest number of hops to each anchor. This
ensures conformity with the model used to estimate the
average distance of a hop and it also greatly reduces
network traffic.

Once a node has received an average hop distance
and data regarding at least 3 or 4 anchor nodes for a
network existing m a 2 or 3-dimensional space, it 1s able
to perform a triangulation to estimate its location
(Hightower and Boriello, 2001). If this node subsequently
receives new data after already having performed a
triangulation, either a smaller hop count or a new anchor,
the node simply performs another triangulation to include
the new data. This procedure 13 summanized i the
following piece of pseudo code:

when a positioming packet 1s received,

if new anchor or lower hop count

then store hop count for this anchor.

broadcast new packet for this anchor with

hop count = (hop count + 1).

else do nothing.

if average hop count is known and number of an
chors > = (dimension of space + 1)

then triangulate.

else do nothing.



Int. J. Soft Comput., 3 (4): 308-314, 2008

The resulting position estimate is likely to be coarse
in terms of accuracy, but it provides an initial condition
from which Refinement can launch.

Refinement: Given the initial position estimates of
Hop-TERRAIN in the start-up phase, the objective of the
refinement phase (Shang et al, 2004) 1s to obtamn more
accurate positions using the estimated ranges between
nodes. Since, Refinement must operate in an ad-hoc
network, only the distances to the direct (one-hop)
neighbors of a node are considered.

Refnement 15 an iterative algorithm in which the
nedes update their positions in a number of steps. At the
beginning of each step a node broadcasts its position
estimate, receives the positions and corresponding range
estimates from its neighbors and computes a least squares
triangulation solution to determine its new position.
When, after a number of iterations, the position update
becomes small and then Refinement stops and reports the
final position. The factors that influence the convergence
and accuracy of iterative Refinement are the accuracy
of the initial position estimates, the magnitude of errors
n the range estimates, the average munber of neighbors
and the fraction of anchor nodes. Assume that
redundancy can counter the above influences to a large
extent. When a node has more than 3 (4) neighbors in
a 2 (3)-dunensional space the induced system of linear
equations 1s over-defined and errors will be averaged out
by the least squares solver (Doherty e al., 2001).

Despite the positive effects from redundancy it is
observed that a straightforward application of Refinement
did not comverge m a considerable number of
“reasonable” cases. Close inspection of the sequence of
steps taken under Refinement revealed two important
causes:

Errors propagate fast throughout the whole network.
If the network has a diameter d, then an error
mtroduced by a node m step s has (indirectly)
affected every node i the network by step s + d
because of the triangulate-hop pattern.

Some network topologies are inherently hard, or even
unpossible, to locate. For example, a cluster of n
nodes (no anchors) connected by a single link to the
main network can be simply rotated around the
‘entry’ -point into the network while keeping the exact
same intra- node ranges. Another example 1s given in
Fig. 1.

To mitigate error propagation the refinement
algorithm 1s modified to include a confidence associated
with each node’s posittion The confidences are used to
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Fig. 1: Example topology

weigh the equations when solving the system of linear
equations. Instead of solving Ax = b, now solve wAx = b,
where wb is the vector of confidence weights. Nodes, like
anchors, that have lugh faith m their position estimates
select high confidence values (close to 1). A node that
observes poor conditions (e.g., few neighbors, poor
constellation) associates a low confidence (close to 0)
with its position estimate and consequently has less
impact on the outcome of the triangulations performed by
its neighbors.

Another improvement to Refinement was necessary
to handle the second 1ssue of ill-connected groups of
nodes. Detecting that a single node 1s ill-connected 1s
easy: if the number of neighbors is less than 3 (4) then the
node is ill-connected in a 2 (3)-dimensional space.
Detecting that a group of nodes 1s 1ll connected, however,
13 more complicated since some global overview is
necessary. So employ a heuristic that operates in an ad-
hoc fashion (no centralized computation), yet is able to
detect most 1ll-commected nodes. The underlymg premise
for the heuristic 1s that a sound node has independent
references to at least 3 (4) anchors. That is, the multi-hop
routes (Ganesan ef al., 2002) to the anchors have no link
{edge) in common. For example, node 3 in Fig. 1 meets
these criteria and is considered sound.

To determine if a node is sound, the Hop-TERRATN
algorithm records the TD of each node’s immediate
neighbor along a shortest path to each anchor. When
multiple shortest paths are available, the first one
discovered is used. These IDs are collected in a set of
sound neighbors. When the number of unique IDs in this
set reaches 3 (4), a node declares itself sound and may
enter the Refinement phase. The neighbors of the sound
node add its TD to their sets and may in tum become
sound if their sound sets become sufficient. This process
continues throughout the network. The end result is that
most ill-connected nodes will not be able to fill their sets
of sound neighbors with enough entries and therefore,
may not participate in the Refinement phase. In the
example topology in Fig. 1, node 3 will become sound, but
node 4 will not.
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IMPLEMENTATION

To analyze study the robustness of the two-phase
positiomng algorithm 1t was 1implemented m NS2
simulation environment and average position error after
Hop-TERRAIN and Refinement process are calculated.

The positioning algorithm is designed to be used in
an ad-hoc network that presumably employs multi-hop
routing algorithms (Ganesan et al., 2002; Chu et al., 2002)
and 1t only requires that a node be able to broadcast a
message to all of its one hop neighbors.

In Hop-TERRAIN algorithm, all of the nodes in the
network are waiting to receive hop count packets
informing them of the positions and hop distances
associated with each of the anchor nodes at time zero.
Also at time zero, each of the anchor nodes 1 the network
broadcasts a hop count packet, which is received and
repeated by all of the anchors’ one-hop neighbors. This
information is propagated throughout the network until,
ideally, all the nodes in the network have positions and
hop counts for all of the anchors in the networlk as well as
an average hop distance. At this pomnt, each of the nodes
performs a triangulation to create an initial estimate of its
position. The number of anchors mn any particular
scenario is not known by the nodes in the networlk,
however, so 1t 15 difficult to define stopping criteria to
dictate when a node should stop waiting for more
mformation before performing a triangulation. To solve
this problem, nodes perform triangulations every time
they receive mformation that i1s not stale after having
received information from the first 3 (4) anchors ina 2 (3)-
dimensional space. Nodes also rely on the anchor nodes
to inform them of the value to use for the assumed
average hop distance used in calculating the estimated
range to each anchor. When an anchor node receives a
hop count from another anchor it computes its estimate of
the average hop distance and floods that back into the
network. Nodes wait for the first such estimate to arrive
before performing any triangulation as outlined above.
Subsequent, estimates from other anchor pairs are simply
discarded to reduce network load.

In refinement algorithm, the mformation in incoming
messages is recorded internally, but not processed
mnmediately. This allows for accumulating multiple
position updates from different neighbors and responding
with a single reply. The task of an anchor node 15 to
broadcasts its position whenever it has detected a new
neighbor in the preceding period. The task of an unknown
node is, if new information arrived in the preceding period
it performs a triangulation to compute a new position
estimate, determines an associated confidence level and
finally decides whether or not to send out a position
update to its neighbors.
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A confidence is a value between 0 and 1. Anchors
immediately start off with confidence 1, unknown nodes
start off at a low value (0.1) and may raise their confidence
at subsequent Refmement iterations. Whenever a node
performs a successful triangulation it sets its confidence
to the average of its neighbors” confidences. This will, in
general, raise the confidence level. Nodes close to
anchors will raise thewr confidence at the first
triangulation, raising in turn the confidence of nodes 2
hops away from anchors on the next iteration, etc.

To avoid flooding, the network with insignificant or
erroneous position updates the triangulation results are
classified as follows. First, a triangulation may simply
fail because the system of equations is underdetermined
(too few neighbors, bad constellation). Second, the new
position may be very close to the current one, rendering
the position update insignificant. Use a tight cutoff radius
of 1/100 of the radio range; experimentation showed
Refinement is fairly insensitive to this value as long as it
15 small (under 1% of the radio range). Third, check that
the new position is within the reach of the anchors used
by Hop-TERRAIN. Similarly to check the convex
constraints (Shang et al., 2004) that the distance between
the position estimate and anchor a; must be less than the
length of the shortest path to aj(hop-count;) times the
radio range (R). When the position drfts outside the
convex region, then reset the position to the original initial
position computed by Hop-TERRAIN. Finally, the validity
of the new position is checked by computing the
difference between the sum of the observed ranges and
the sum of the distances between the new position and
the neighbor locations. Dividing this difference by the
number of neighbors yvields a normalized residue. Tf the
residue is large (residue > radio range) then assume that
the system of equations 1s inconsistent and reject the new
position.

RESULTS

This algorithm 1s implemented using NS2 simulation
environment. All data points represent averages over
100 trials in networks contaimng 400 nodes. The nodes
are randomly placed, with a uniform distribution, within a
square area. The specified fraction of anchors is randomly
selected and the range between connected nodes is
blurred by drawing a random value from a normal
distribution having a parameterized standard deviation
and having the true range as the meanl. The connectivity
(average number of neighbors) is controlled by specifying
the radio range. To allow for easy comparison between
different scenarios, range errors as well as errors on
position estimates are normalized to the radio range
(i.e., 50% position error means half the range of the radio).
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Figure 2 shows the average performance of the
Hop-TERRAIN algorithm as a function of connectivity
and anchor population in the presence of 5% range errors.
As seen in this plot, position estimates by Hop-TERR AN
have an average accuracy under 100% error in scenarios
with at least 5% anchor population and an average
comectivity level of 7 or greater. In extreme situations
where very few anchors exist and connectivity in the
network is very low, Hop-TERRAIN errors reach above
250%.

Figure 3 displays the results from the same
experiment depicted in Fig. 2, but now the position
estimates of Hop-TERRAIN are subsequently processed
by the Refinement algorithm. Its shape 1s similar to that of
Fig. 2, showing relatively consistent error levels of less
than 33% 1n scenarios with at least 5% anchor population
and an average comnectivity level of 7 or greater.
Refinement also has problems with low comnectivity and
anchor populations and 1s shown to climb above 50%
position  error Overall
Refinement improves the accuracy of the position
estimates by Hop-TERRATN by a factor three to five.

Figure 4 shows the sharp increases in positioning
errors for low anchor populations and sparse networks
shown in Fig. 2 and 3. Also this shows that the average

in these harsh conditions.

comectivity between nodes throughout the network
decreases past certain points, both algorithms break
down, failing to derive position estimates for large
fractions of the network. This 1s due simply to a lacking of
sufficient nformation and 13 a necessary consequence of
loosely connected networks. Nodes can only be located
when connected to at least 3 (4) neighbors, Refinement
also requires a mimmal confidence level (0.1). It
should be noted that the results in Fig. 4 imply that the
reported average position errors for low connectivity in
Fig. 2 and 3 have low statistical significance, as these
points represent only small fractions of the total networl.
Nevertheless, the general conclusion to be drawn from
Fig. 2-4 1s that both Hop-TERRAIN and Refimement
perform poorly in networks with average connectivity
levels of less than 7.

In the above experiment, place 400 nodes randomly
on the vertices of a 200x200 grid, rather than allowing the
nodes to sit anywhere in the square area. Tt is found that
the grid layout did not result in better performance for the
Refinement algorithm, relative to the performance of the
Refinement algorithm with random node placement. Tt was
found that a difference in performance for Hop-TERRAIN
though. Figure 5 shows that placing the nodes on a grid
dramatically reduces the errors of the Hop-TERRAIN
algorithm in the cases where cormectivity or anchor node
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Fig. 2: Average position error after Hop-TERRAIN
(5% range errors)
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grid, 5% range errors)
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populations are low. For example, with 5% anchors and a
comectivity of & nodes, the average position error
decreases from 95% (random distribution) to 60% (grid).

Sensitivity to average error levels mn the range
measurements is a major concern for positioning
algonthms. Figure 6 shows the results of an experiment in
which the anchor population and connectivity constant
at 10% and nodes, respectively, while varying the average
level of error in the range measurements. Tt is found that
Hop-TERRAIN was almost completely msensitive to
range errors. This is a result of the binary nature of the
procedure in which routing hops are counted; if nodes
can see each other, they pass on incremented hop counts,
but at no time do any nodes attempt to measure the actual
ranges between them. Unlike Hop-TERRAIN, Refinement
does rely on the range measurements performed between
nodes and Fig. 6 shows this dependence accordingly. At
less than 40% error m the range measurements, on
average, Refinement offers improved position estimates
over Hop-TERRATN. The results improve steadily as the
range errors decrease. For each node performed a
triangulation using the true positions of its neighbors and
the corresponding erroneous range measurements. The
resulting position errors are plotted as the lower bound in
Fig. 6.

DISCUSSION

The Hop-TERRAIN algorithm results are compared
with DV-hop algorithm (Niculescu and Nath, 2003). The
position error for Hop-TERRATN is 69% and for DV-hop
15 35% on a scenario with 10% anchor nodes and a
connectivity of 8 Under poorer network conditions
though, Hop-TERRAIN 1s more robust than DV-hop,
showing about a factor of 2 improvements in position
accuracy in sparsely connected networks. Regardless, the
trend observed in both studies is the same: when the
fraction of anchors drops below 5%, position errors
rapidly increase.
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The results of Refinement are comparable to an
“iterative multilateration”™ scenario (Bulusu ef af., 2000)
with 50 nodes, 20% anchors, comnectivity 10 and 1%
range errors (Savarese ef al, 2002). Their algorithm,
however, can handle neither low anchor fractions nor low
commnectivity, because positiomng starts from nodes
Furthermore the
preliminary results of their more advanced “collaborative
multilateration” algorithm (Savvides et al., 2002; Ko and
Vaidya, 2000) show that Refinement is able to determine
the position of a larger fraction of unknowns: 56%
(Refinement) versus 10% (collaborative multilateration)
on a scenario with just 5% anchors (200 nodes,

comnected to at least 3 anchors.

comnectivity 6).

Based on the expenimental results it 1s recommending
the following guidelines for the mstallation of wireless
sensor networks:

Place anchors carefully (1.e., at the edges) and either.
Ensure a lugh connectivity (>10).
Employ a reasonable fraction of anchors (>>5%).

This will create the best conditions for positioning
algorithms m general and for Hop-TERRAIN and
Refinement in particular.

CONCLUSION

In this study it has been presented a fully distributed
algorithm for solving the problem of positioning nodes
within an wireless ad-hoc sensor network nods. The Hop-
TERRAIN and Refinement algorithms were used in this
problem. The sunulation environment used to evaluate
these algorithms 1s explained, including details about the
specific implementation of each algorithm. Experiments
were done in the simulation environment with respect to
several aspects and the performance results achieved
under different scenarios were analyzed for each
algorithm. The results show that it was able to achieve
position errors of less than 33% mn a scenario with 5%
range measurement error, 5% anchor population and an
average connectivity of 7 nodes. Finally, guidelines for
implementing and deploying a network that will use these
algorithms are given and explained.

An important aspect of wireless sensor networks is
energy consumption. In future this study can be
implemented to analyze the amount of communication and
computation mduced by running Hop-TERRAIN and
Refinement. The accuracy vs. energy consumption trade-
off changes over subsequent iterations of Refinement
also can be performed.
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